1. 1.|Goldfish acclimated to a range of temperatures between 5 and 35°C were found to only compensate the specific activity of their myofibrillar ATPase enzyme between 10 and 30°C.
2. 2.|The preferred temperatures of goldfish acclimated to 5°C and to 30°C were determined to be about 10 and 26°C respectively.
3. 3.|It is conlcuded that goldfish are only able to acclimate their myofibrillar ATPase system to temperatures between 10 and 30°C, but acclimation to these temperatures enables them to tolerate extremes.
Author Keywords: Acclimation; myofibrillar ATPase activity; temperature preference; adaption and tolerance limits; goldfish; Carassus auratus相似文献
Goldfish, Carassius auratus, silver dollar, Metynnis hypsauchen, and angelfish, Pterophyllum scalare were induced to swim through narrow vertical and horizontal tubes ranging in length from 0 to 20 cm (approximately 0 to 3 times total fish length, FL). The ability to stabilize the body while negotiating these confined spaces was quantified as (1) the minimum width of vertical (wv) and horizontal (wh) tubes traversed, where width is the smaller cross-sectional dimension of the tube, (2) the ratio wv/wh, and (3) transit speed through the tubes. Tube width was expressed as relative width, obtained by dividing tube width by fish length. Minimum relative widths traversed increased from 0.15 to 0.19 in the order silver dollar > angelfish > goldfish for vertical tubes and from 0.17 to 0.18 in the order goldfish=silver dollar > angelfish for horizontal tubes. wv/wh increased from 0.91 to 1.10 in the order silver dollar=angelfish > goldfish. Minimum tube widths generally increased with tube length for vertical tubes. Although significant differences in relative minimum widths among species were found, these were small. In contrast, for horizontal tubes, there was no significant effect of tube length on minimum tube width for any species. Large differences were found in transit speed. Transit speed generally decreased as the tube length increased. The slope of the relationship between transit speed and tube length varied among species generally increasing from – 0.41 to – 1.16 for horizontal tubes in the order goldfish > silver dollar > angelfish and from – 0.42 to – 1.07 in the order silver dollar > goldfish > angelfish for vertical tubes. As a result, goldfish usually took longest to traverse tubes of zero length but the shortest time to traverse the longest tubes. In contrast, angelfish traversed short tubes in the least time and long tubes in the greatest time. Deeper bodied angelfish swam slowly and traversed tubes with difficulty because they required experience during each trial to replace median and paired fin with body and caudal fin swimming. According to our data, goldfish were best able to swim in confined spaces. 相似文献
The tissue distribution of aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) in summer-acclimatized crucian carp showed almost the same exceptional pattern as previously found in winter-acclimatized specimens. There was a nearly complete spatial separation of ALDH and ADH; in other vertebrates these enzymes occur together. This exceptional enzyme distribution is probably an adaptation to the extraordinary ability of Carassius to produce ethanol as the major metabolic end product during anoxia. Since the crucian carp is less likely to encounter anoxia during the summer, the present results suggest that the crucian carp is unable to switch over to a 'normal' ALDH and ADH distribution in the summer. However, it is also possible that there is an advantage for the summer-acclimatized crucian carp in keeping ALDH and ADH separate, because of occasional anoxic periods. 相似文献
1. 1.|Neural activity was recorded in hippocampal slices from noncold-acclimated, cold-acclimated and hibernating hamsters.
2. 2.|Action potentials from a population of hippocampal pyramidal neurons were evoked by stimulating an afferent fiber tract, the Schaffer collaterals. The temperature of the artificial cerebrospinal fluid bathing the slice was varied by controlling the temperature of a water chamber jacketing the recording chamber.
3. 3.|The temperature just below that at which a population spike could be evoked, Tt, was 15.8 ± 0.9°C (mean ± SEM) for noncold-acclimated hamsters, 13.9 ± 0.3°C for cold-acclimated hamsters and 12.3 ± 0.3°C for hibernating hamsters.
4. 4.|These thresholds for evoked activity were significantly different in noncold-acclimated, cold-acclimated and hibernating hamsters, and may reflect acclimation of hippocampal neurons to cold.
Regeneration technologies such as androgenesis, intracytoplasmic sperm injection, and nuclear transfer require that handling conditions do not alter oocyte ability to sustain embryo development. One important parameter in the maintenance of oocyte quality in fish is the possibility to prevent oocytes activation during manipulation. In Cyprinid, such activation is known to be delayed when Salmonid coelomic fluid is used as incubation medium. Coelomic fluid however is a biological fluid whose ability to sustain oocyte quality during in vitro incubation may be variable. The purpose of the present work was to explore this variability using Rainbow Trout (Oncorhynchus mykiss) coelomic fluid (TCF) and Goldfish (Carassius auratus) oocytes, and to set up a test which would reflect TCF suitability for Goldfish oocyte incubation. We showed that different TCF induced very different development rates after oocyte incubation for 30 min at 20 °C: at 24h post fertilization (pf) and at hatching, rates ranged between 35% and 110% of the non-incubated controls. When TCF (1 volume) was mixed with tap water (9 volumes), a precipitate developed whose extent was measured by spectrophotometry. This turbidity test proved to be highly correlated to development rates after Goldfish oocyte incubation in TCF (r2 = 0.83 at hatching, n = 150): TCF with the highest turbidity (> 1.5 absorbance unit at 400 nm) were the ones which altered the most the development rates after incubation (less than 50 % at hatching). This easy and rapid turbidity test can therefore be used as a reliable estimator of TCF suitability for Goldfish oocyte incubation and manipulation. 相似文献
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers—yellow-shafted and red-shafted flickers—to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes. 相似文献