首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   41篇
  国内免费   25篇
  908篇
  2024年   3篇
  2023年   7篇
  2022年   2篇
  2021年   8篇
  2020年   9篇
  2019年   18篇
  2018年   16篇
  2017年   16篇
  2016年   14篇
  2015年   29篇
  2014年   66篇
  2013年   56篇
  2012年   69篇
  2011年   94篇
  2010年   73篇
  2009年   16篇
  2008年   35篇
  2007年   31篇
  2006年   20篇
  2005年   21篇
  2004年   33篇
  2003年   21篇
  2002年   26篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   14篇
  1996年   13篇
  1995年   16篇
  1994年   10篇
  1993年   13篇
  1992年   7篇
  1991年   15篇
  1990年   8篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1982年   11篇
  1981年   7篇
  1980年   8篇
  1979年   8篇
  1978年   11篇
  1977年   1篇
  1976年   1篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
871.
A technique for reliable labeling of the carbon reserves of the trunk and roots without labeling the current year's growth of grapevines was developed in order to study retranslocation of carbon from the perennial storage tissues into the fruit in response to defoliation stress during the ripening period. A special training system with two shoots was used: the lower one (feeding shoot) was cut back and defoliated to one single leaf (14CO2-feeding leaf) while the other (main shoot) was topped to 12 leaves. The potted plants were placed in a water bath at 30 °C to increase root temperature and therefore their sink activity. Additionally, a cold barrier (2–4 °C) was installed at the base of the main shoot to inhibit acropetal 14C translocation. Using this method, we were able to direct labeled assimilates to trunk and roots in preference to the current year's growth. On vines with root and shoot at ambient temperature, 44% of the 14C activity was found in the main shoot 16 h after feeding whereas only 2% was found in the temperature-treated vines. At the onset of fruit ripening, and at three-week intervals thereafter until harvest, potted grapevines were fed with 14CO2 using the temperature treatment described above. Sixteen hours after feeding, half of the vines of each group were defoliated by removing all except the two uppermost main leaves. Three weeks after each treatment, vines were destructively harvested and the dry weight and 14C incorporation determined for all plant parts. Under non-stressing conditions, there was no retranslocation of carbon reserves to support fruit maturation. Vines responded to defoliation stress by altering the natural translocation pattern and directing carbon stored in the lower parts to the fruit. In the three weeks following veraison (the inception of ripening in the grape berry), 12% of the labeled carbon reserves was translocated to the fruit of defoliated plants compared to 1.6% found in the clusters of control vines. Retranslocation from trunk and roots was highest during the middle of the ripening period, when 32% of the labeled carbon was found in the fruit compared to 0.7% in control plants. Defoliation during this period also caused major changes in dry-matter partitioning: the fruit represented 31% of total plant biomass compared to 21% measured in the control vines. Root growth was reduced by defoliation at veraison and during the ripening period. Defoliation three weeks before harvest did not affect dry matter or 14C partitioning.  相似文献   
872.
Signal peptide cleavage and N-glycosylation of proteins are co-translational processes, but little is known about their interplay if they compete for adjacent sites. Here we report two unique findings for processing of glycoprotein 3 of equine arteritis virus. Glycoprotein 3 (Gp3) contains an N-terminal signal peptide, which is not removed, although bioinformatics predicts cleavage with high probability. There is an overlapping sequon, NNTT, adjacent to the signal peptide that we show to be glycosylated at both asparagines. Exchanging the overlapping sequon and blocking glycosylation allows signal peptide cleavage, indicating that carbohydrate attachment inhibits processing of a potentially cleavable signal peptide. Bioinformatics analyses suggest that a similar processing scheme may exist for some cellular proteins. Membrane fractionation and secretion experiments revealed that the signal peptide of Gp3 does not act as a membrane anchor, indicating that it is completely translocated into the lumen of the endoplasmic reticulum. Membrane attachment is caused by the hydrophobic C terminus of Gp3, which, however, does not span the membrane but rather attaches the protein peripherally to endoplasmic reticulum membranes.  相似文献   
873.
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is identified as a 39-kDa phosphoprotein found predominantly in the cell nuclei [1994, J. Biol. Chem. 269,2258-2262]. SET is fused to a putative oncoprotein, CAN, in AUL and is thought to regulate the transformation potential of SET-CAN by its nuclear localization and phosphorylation. We investigated in detail the in vivo phosphorylation of SET. Phosphorylation of SET occurred in all human cell lines examined in vivo, primarily on serine residues. Endoproteinase Glu-C digestion of phosphorylated SET yielded two phosphopeptides. By radiosequencing, we identified the in vivo phosphorylation sites of SET as Ser9 and Ser24. The surrounding sequences of Ser9 and Ser24 contained an apparent consensus site sequence for protein kinase C.  相似文献   
874.
Looking for new means of assessing local conformational and dynamic heterogeneities in DNA structure, we have estimated the rates of phosphodiester bond cleavage in DNA fragments of known sequence caused by ultrasonic treatment. Among the 16 dinucleotide steps possible, those with 5′-ward cytosine [5′-d(CpN)-3′] are distinguished by significantly higher cleavage rates: CG > CA = CT > CC. The possible causes of this intriguing phenomenon are considered.  相似文献   
875.
Summary The effect of Ca on the absorption and translocation of Mn, Zn and Cd in excised barley roots was studied using a multi-compartment transport box technique. A radioisotope (54Mn,65Zn or115mCd)-labelled test solution was supplied to the apexes of excised roots and the distribution pattern in the roots was examined in the absence or presence of Ca. Results obtained were as follows. Addition of Ca to the test solution reduced the absorption of Mn and inhibited drastically its translocation in excised roots. With increasing concentrations of Ca in test solutions, its inhibitory effects on the absorption and translocation of Mn became severe. Similar results were observed for the absorption and translocation of Zn. Ca in the test solution decreased the absorption and inhibited drastically the translocation of Zn; as in the case of Mn, higher concentrations of Ca had severe effects on these functions. It was also evident that the addition of Ca to the test solution reduced the absorption of Cd at all levels of Cd concentration (1, 10, and 100 μM). Cd absorption decreased with increasing concentrations of Ca in the test solution. However, Ca accelerated the translocation of Cd in excised roots supplied with test solutions containing up to 10μM Cd. At 100μM Cd, addition of Ca caused a negligibly small acceleration of Cd translocation. The accelerating effect of Ca on Cd translocation, especially “xylem exudation”, decreased markedly with the addition of 2,4-dinitrophenol, but not with the addition of chloramphenicol or p-chloromercuribenzene sulphonic acid. When barley plants were supplied with only CaSO4 during the entire growing period, that is, plants were not supplied with nutrient solution on the last day of this period, Ca had no accelerating effect on Cd translocation in excised roots.  相似文献   
876.
BAYESian fixed sample size and sequential procedures are considered for the estimation of the unknown parameter v of a uniform distribution over (0, v), under several loss functions.  相似文献   
877.
Summary Experiments were performed to measure the pH-sensitive steps in nodulation and symbiotic fixation byPisum sativum and isolate RP-212-1 ofRhizobium leguminosarum. An aeroponic system with rigorous pH control was used to obtain numerous effective nodules. After exposure to various pH levels, the following responses were measured: (1) legume root growth and development, (2) survival and growth rate of a single effective bacterial isolate, (3) degree of nodulation, (4) rate of nitrogen fixation, (5) plant biomass, and (6) nitrogen content of plants. Both bacterial growth and root development were adequate at all pH levels from 4.4 to 6.6, but efficient nodulation and nitrogen fixation did not occur at pH 4.8 and below. The processes required for symbiosis were about 10 times as sensitive to acidity as either bacterial growth or root growth alone. Nodulation was the most acid-sensitive step.  相似文献   
878.
ABSTRACT. Survival time at subzero temperatures is related to both long-term thermal history and the rate at which the insects are cooled. Insects cooled at one degree per hour survive for up to 3 times as long at a given test temperature than do insects cooled at 1C/min. Survival times are significantly shorter than times taken to freeze. Survival time at an extreme high temperature is related to long-term thermal history but the rate of heating makes no difference.  相似文献   
879.
In response to a low environmental pH and with the help of the B fragment (DTB) the catalytic domain of diphtheria toxin (DTA) crosses the endosomal membrane to inhibit protein synthesis. In this study, we investigated the interaction of DTA with lipid membranes by biochemical and biophysical approaches. Data obtained from proteinase K and trypsin digestion experiments of membrane-inserted DTA suggested that residues 134-157 may adopt a transmembrane orientation and residues 77-100 could be membrane-associated, adopting either a surface or a transmembrane orientation. Fourier transform infrared spectroscopy analysis (FTIR) was used to characterize the secondary and tertiary structure of DTA along its pathway, from the native secreted form at pH 7.2 to the refolded structure at neutral pH after interaction with and desorption from a lipid membrane. We found that the association of DTA with lipid membranes at low pH was characterized by an increase of β-sheet structures and that the refolded structure at neutral pH after interaction with the membrane was identical to the native structure at the same pH. We also investigated the desorption of DTA from the membrane at neutral pH as a function of temperature. Although a complete desorption was observed at 37 °C, no desorption took place at 4 °C. A model of translocation involving the possibility that DTA might insert one or several transient transmembrane domains during translocation is discussed.  相似文献   
880.
The AAA ATPases PEX1?PEX6 extract PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane so that a new protein transport cycle can start. Extraction requires ubiquitination of PEX5 at residue 11 and involves a threading mechanism, but how exactly this occurs is unclear. We used a cell-free in vitro system and a variety of engineered PEX5 and ubiquitin molecules to challenge the extraction machinery. We show that PEX5 modified with a single ubiquitin is a substrate for extraction and extend previous findings proposing that neither the N- nor the C-terminus of PEX5 are required for extraction. Chimeric PEX5 molecules possessing a branched polypeptide structure at their C-terminal domains can still be extracted from the peroxisomal membrane thus suggesting that the extraction machinery can thread more than one polypeptide chain simultaneously. Importantly, we found that the PEX5-linked monoubiquitin is unfolded at a pre-extraction stage and, accordingly, an intra-molecularly cross-linked ubiquitin blocked extraction when conjugated to residue 11 of PEX5. Collectively, our data suggest that the PEX5-linked monoubiquitin is the extraction initiator and that the complete ubiquitin-PEX5 conjugate is threaded by PEX1?PEX6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号