首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2096篇
  免费   95篇
  国内免费   203篇
  2024年   15篇
  2023年   36篇
  2022年   44篇
  2021年   50篇
  2020年   45篇
  2019年   54篇
  2018年   69篇
  2017年   47篇
  2016年   52篇
  2015年   54篇
  2014年   85篇
  2013年   132篇
  2012年   44篇
  2011年   87篇
  2010年   90篇
  2009年   95篇
  2008年   112篇
  2007年   110篇
  2006年   104篇
  2005年   104篇
  2004年   78篇
  2003年   72篇
  2002年   70篇
  2001年   46篇
  2000年   50篇
  1999年   48篇
  1998年   46篇
  1997年   43篇
  1996年   34篇
  1995年   35篇
  1994年   35篇
  1993年   32篇
  1992年   29篇
  1991年   27篇
  1990年   19篇
  1989年   28篇
  1988年   32篇
  1987年   16篇
  1986年   14篇
  1985年   18篇
  1984年   26篇
  1983年   26篇
  1982年   31篇
  1981年   17篇
  1980年   26篇
  1979年   22篇
  1978年   16篇
  1977年   12篇
  1976年   5篇
  1972年   3篇
排序方式: 共有2394条查询结果,搜索用时 156 毫秒
181.
182.
The energy density of current batteries is limited by the practical capacity of the positive electrode, which is determined by the properties of the active material and its concentration in the composite electrode architecture. The observation in dynamic conditions of electrochemical transformations creates the opportunity of identifying design rules toward reaching the theoretical limits of battery electrodes. But these observations must occur during operation and at multiple scales. They are particularly critical at the single‐particle level, where incomplete reactions and failure are prone to occur. Here, operando full‐field transmission X‐ray microscopy is coupled with X‐ray spectroscopy to follow the chemical and microstructural evolution at the nanoscale of single crystals of Li1+xMn2–xO4, a technologically relevant Li‐ion battery electrode material. The onset and crystallographic directionality of a series of complex phase transitions are followed and correlated with particle fracture. The dynamic character of this study reveals the existence of nonequilibrium pathways where phases at substantially different potentials can coexist at short length scales. The results can be used to inform the engineering of particle morphologies and electrode architectures that bypass the issues observed here and lead to optimized battery electrode properties.  相似文献   
183.
An efficient C-5 iodination of pyrimidine-5′-triphosphates and subsequent palladium-catalyzed Sonogashira coupling reaction with propargylamine is described. The iodination reaction is highly regioselective and the coupling reaction is highly chemoselective that furnishes exclusive 5-(3-aminopropargyl)-pyrimidine-5′-triphosphate in good yield with high purity (>99%).  相似文献   
184.
Cardiac calsequestrin (CASQ2) contributes to intracellular Ca2+ homeostasis by virtue of its low-affinity/high-capacity Ca2+ binding properties, maintains sarcoplasmic reticulum (SR) architecture and regulates excitation–contraction coupling, especially or exclusively upon β-adrenergic stimulation. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease associated with cardiac arrest in children or young adults. Recessive CPVT variants are due to mutations in the CASQ2 gene. Molecular and ultra-structural properties were studied in hearts of CASQ2R33Q/R33Q and of CASQ2−/− mice from post-natal day 2 to week 8. The drastic reduction of CASQ2-R33Q is an early developmental event and is accompanied by down-regulation of triadin and junctin, and morphological changes of jSR and of SR-transverse-tubule junctions. Although endoplasmic reticulum stress is activated, no signs of either apoptosis or autophagy are detected. The other model of recessive CPVT, the CASQ2−/− mouse, does not display the same adaptive pattern. Expression of CASQ2-R33Q influences molecular and ultra-structural heart development; post-natal, adaptive changes appear capable of ensuring until adulthood a new pathophysiological equilibrium.  相似文献   
185.
《FEBS letters》2014,588(8):1278-1287
Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling.  相似文献   
186.
This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers [postnatal 3 months (M)] and spine pruning (postnatal 6 M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3 M and 6 M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using “Ingenuity Pathway Analysis of complex omics data” (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6 M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6 M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6 M than at 3 M, suggesting that normal brain tissue is more protected at 6 M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6 M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.  相似文献   
187.
B‐cell lymphoma extra‐large protein (BclXL) serves as an apoptotic repressor by virtue of its ability to recognize and bind to BH3 domains found within a diverse array of proapoptotic regulators. Herein, we investigate the molecular basis of the specificity of the binding of proapoptotic BH3 ligands to BclXL. Our data reveal that while the BH3 ligands harboring the LXXX[A/S]D and [R/Q]XLXXXGD motif bind to BclXL with high affinity in the submicromolar range, those with the LXXXGD motif afford weak interactions. This suggests that the presence of a glycine at the fourth position (G+4)—relative to the N‐terminal leucine (L0) within the LXXXGD motif—mitigates binding, unless the LXXXGD motif also contains arginine/glutamine at the ?2 position. Of particular note is the observation that the residues at the +4 and ?2 positions within the LXXX[A/S]D and [R/Q]XLXXXGD motifs appear to be energetically coupled—replacement of either [A/S]+4 or [R/Q]‐2 with other residues has little bearing on the binding affinity of BH3 ligands harboring one of these motifs. Collectively, our study lends new molecular insights into understanding the binding specificity of BH3 ligands to BclXL with important consequences on the design of novel anticancer drugs. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 573–582, 2014.  相似文献   
188.
The most common cystic fibrosis (CF)‐causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (ΔF508) in the first of two nucleotide‐binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR chloride channel activity. We report NMR studies of wild‐type and ΔF508 murine CFTR NBD1 with the C‐terminal regulatory extension (RE), which contains residues of the R region. Interactions of the wild‐type NBD1 core with the phosphoregulatory regions, the regulatory insertion (RI) and RE, are disrupted upon phosphorylation, exposing a potential binding site for the first coupling helix of the N‐terminal intracellular domain (ICD). Phosphorylation of ΔF508 NBD1 does not as effectively disrupt interactions with the phosphoregulatory regions, which, along with other structural differences, leads to decreased binding of the first coupling helix. These results provide a structural basis by which phosphorylation of CFTR may affect the channel gating of full‐length CFTR and expand our understanding of the molecular basis of the ΔF508 defect.  相似文献   
189.
Herein, we present the solution‐state NMR studies on dextromethorphan ( 1 ) under both isotropic and anisotropic conditions. From the measurement of 22 residual dipolar couplings using a stretched polystyrene gel (PS), we show that accurate and detailed structural information is readily determined including the relative stereochemical assignments of chiral centers, validation of diastereomer configuration, and the stereospecific assignment of the seven pairs of prochiral protons. This utility of PS gels is thus showcased to obtain rapid, accurate conformational, and relative configuration information in this important class of compounds without recourse to X‐ray analysis. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
190.
Macro-/Micro-structures and mechanical properties of the elytra of beetles were studied. The Scan Electron Microscope (SEM) and optical microscopy were employed to observe the macro-/micro-structure of the surface texture and cross-section structure of elytra. Nano-indentation was carried out to measure the elastic modulus and the hardness of elytra. Tensile strengths of elytra in lateral and longitudinal directions were measured by a muhifunctional testing machine. The coupling force between elytra was also measured and the clocking mechanism was studied. SEM images show the similar geometric structure in transverse and longitudinal sections and multilayer-dense epicuticle and exocuticle, followed by bridge piers with a helix structured fibers, which connect the exocuticle to the endodermis, and form an ellipse empty to reduce the structure weight. The elastic modulus and the hardness are topologically distributed and the mechanical parameters of fresh elytra are much higher than those of dried elytra. The tensile strength of the fresh biological material is twice that of dried samples, but there is no clear difference between the data in lateral and longitudinal directions. Coupling forces measured are 6.5 to 160 times of beetles' bodyweight, which makes the scutellum very important in controlling the open and close of the elytra. The results provide a biological template to inspire lightweight structure design for aerospace engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号