首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   1篇
  国内免费   14篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   11篇
  2018年   8篇
  2017年   9篇
  2016年   3篇
  2015年   19篇
  2014年   84篇
  2013年   80篇
  2012年   71篇
  2011年   90篇
  2010年   90篇
  2009年   35篇
  2008年   27篇
  2007年   35篇
  2006年   38篇
  2005年   29篇
  2004年   28篇
  2003年   24篇
  2002年   25篇
  2001年   10篇
  2000年   10篇
  1999年   14篇
  1998年   13篇
  1997年   11篇
  1996年   7篇
  1995年   11篇
  1994年   16篇
  1993年   8篇
  1992年   12篇
  1991年   15篇
  1990年   10篇
  1989年   13篇
  1988年   6篇
  1987年   11篇
  1986年   9篇
  1985年   9篇
  1984年   14篇
  1983年   11篇
  1982年   21篇
  1981年   5篇
  1980年   7篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有974条查询结果,搜索用时 515 毫秒
21.
22.
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome but are nevertheless essential for translation elongation in vivo. The EF-3 polypeptide has been identified in a wide range of fungal species and the gene encoding EF-3 (YEF3) has been isolated from four fungal species (Saccharomyces cerevisiae, Candida albicans, Candida guillermondii, andPneumocystis carinii). Computer-assisted analysis of the predictedS. cerevisiae EF-3 amino acid sequence was used to identify several potential functional domains; two ATP binding/catalytic domains conserved with equivalent domains in members of the ATP-Binding Cassette (ABC) family of proteins, an aminoterminal region showing significant similarity to theE. coli S5 ribosomal protein, and regions of predicted interaction with rRNA, tRNA, and mRNA. Furthermore, EF-3 was also found to display amino acid similarity to myosin proteins whose cellular function is to provide the motive force of muscle. The identification of these regions provides clues to both the evolution and function of EF-3. The predicted functional regions are conserved among all known fungal EF-3 proteins and a recently described homologue encoded by the Chlorella virus CVK2. We propose that EF-3 may play a role in the ribosomal optimization of the accuracy of fungal protein synthesis by altering the conformation and activity of a ribosomal accuracy center, which is equivalent to the S4-S5-S12 ribosomal protein accuracy center domain of theE. coli ribosome. Furthermore, we suggest that EF-3 represents an evolving ribosomal protein with properties analogous to the intrinsic ATPase activities of higher eukaryotic ribosomes, which has wider implications for the evolutionary divergence of fungi from other eukaryotes. Correspondence to: M.F. Tuite  相似文献   
23.
Sequence similarity has given rise to the proposal that IF-2, EF-G, and EF-Tu are related through a common ancestor. We evaluate this proposition and whether the relationship can be extended to other factors of protein synthesis. Analysis of amino acid sequence similarity gives statistical support for an evolutionary affiliation among IF-1, IF-2, IF-3, EF-Tu, EF-Ts, and EF-G and suggests further that this association is a result of gene duplication/fusion events. In support of this mechanism, the three-dimensional structures of IF-3, EF-Tu, and EF-G display a predictable domain structure and overall conformational similarity. The model that we propose consists of three consecutives duplication/fusion events which would have taken place before the divergence of the three superkingdoms: eubacteria, archaea, and eukaryotes. The root of this protein superfamily tree would be an ancestor of the modern IF-1 gene sequence. The repeated fundamental motif of this protein superfamily is a small RNA binding domain composed of two α-helices packed along side of an antiparallel β-sheet. Received: 17 October 1996 / Accepted: 10 June 1997  相似文献   
24.
Eukaryotic initiation factors (eIF) associate readily with 32P-labeled Semliki Forest virus (SFV) mRNA in vitro, forming complexes which can be crosslinked by 254 nm ultraviolet irradiation. After ribonuclease digestion, the initiation factors were released and analysed by gel electrophoresis. Autoradiography revealed proteins by virtue of crosslinked 32P-labeled mRNA fragments. eIF-4A, -4B and -4C as well as three subunits of eIF-3 could be crosslinked with SFV mRNA. None of these proteins bound to ribosomal RNAs.  相似文献   
25.
M. C. Lett  J. Fleck  C. Fritsch  A. Durr  L. Hirth 《Planta》1980,148(3):211-216
The products synthesized in vitro by messenger RNA (mRNA) extracted from Nicotiana sylvestris were analyzed by electrophoresis on polyacrylamide slab gels. Only three of the major polypeptides synthesized are considered here: P55, P32, and P20. P55 and P32 were translated from chloroplast mRNA. P55 corresponds to the large subunit of ribulose-1,5-bisphosphate (RuP2) carboxylase; P32 is probably a chloroplast membrane protein. P20, the polypeptide synthesized from cytoplasmic poly(A)+ RNA, is the precursor of the small subunit of RuP2 carboxylase. The balance between P20 and P32, in which their relative proportions varied inversely, was regulated by the age of the leaves and the time of illumination; we took advantage of this phenomenon to isolate the mRNA from the small subunit in relatively large amounts. This mRNA has a molecular weight of 350,000.Abbreviations RuP2 ribulose-1,5-bisphosphate - mRNA messenger RNA - SDS sodium dodecyl sulfate  相似文献   
26.
Summary The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of Mr 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (Mr 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.  相似文献   
27.
We tested, in rat liver, the postulate that free polysomes were precursors of membrane-bound polysomes. Three methods were used to isolate free and membrane-bound ribosomes from either post-nuclear or post-mitochondrial supernatants of rat liver. Isolation and quantitation of 28 S and 18 S rRNA allowed determination of the 40 S and 60 S subunit composition of free and membrane-bound ribosomal populations, while pulse labeling of 28 S and 18 S rRNA with [6-14C]orotic acid and inorganic [32P]phosphate allowed assessment of relative rates of subunit renewal. Throughout the extra-nuclear compartment, 40 S and 60 S subunits were present in essentially equal numbers, but, free ribosomes contained a stoichiometric excess of 40 S subunits, while membrane-bound ribosomes contained a complementary excess of 60 S subunits. Experiments with labeled precursors showed that throughout the extra-nuclear compartment, 40 S and 60 S subunits accumulated isotopes at essentially equal rates, however, free ribosomes accumulated isotopes faster than membrane-bound ribosomes. Among free ribosomes or polysomes, 40 S subunits accumulated isotopes faster than 60 S subunits, but, this relationship was not seen among membrane-bound ribosomes. Here, 40 S subunits accumulated isotope more slowly than 60 S subunits. This distribution of labeled precursors does not support the postulate that free polysomes are precursors of membrane-bound polysomes, but, these data suggest that membrane-bound polysomes could be precursors of free polysomes.  相似文献   
28.
Core particle DNA unfolding and refolding are followed by stopped-flow circular dichroism technique. When core particles are dissociated in the stopped-flow cuvette, the high CD deviation corresponding to the dissociated state is reached in the first millisecond, which means that the dissociation process is completed within the dead time of the apparatus which is ~1 ms. The same conclusion can be drawn when core particles are reassociated, since the low CD value, typical of the associated state, is immediately reached. Similarly histone release from chromatin is a very fast process. We also include some points of discussion about core particle assembly process.  相似文献   
29.
J. P. Slovin  E. M. Tobin 《Planta》1982,154(5):465-472
Lemna gibba L. G-3 plants grown heterotrophically in the dark with intermittent red light (2 min every 8 h) contain a substantial amount of translatable mRNA encoding the light-harvesting chlorophyll (Chl)a/b-protein. However, very little [35S]methionine is incorporated into the apoproteins during a 1-h labeling period in the dark in these plants compared to plants grown in continuous white light. The Chla/b-protein mRNA is found to be associated with functioning polysomes in plants grown in the dark with intermittent red illumination (R plants). The small amounts of the apoproteins which are synthesized by these plants are found in the membrane fraction; neither the mature apoproteins nor their precursor(s) can be detected immunologically in the soluble fraction. The protein does not accumulate in these plants. Pulse-chase experiments with the R plants demonstrate that the newly synthesized apoproteins have a half-life of about 10 h in the dark. This turnover is not sufficient to explain the observed 20-fold difference in [35S]methionine incorporation into the apoprotein between white-light-grown and R plants. We therefore suggest that the synthesis of the Chla/b-apoproteins can be regulated by a light-dependent step at the level of translation, and that this regulation occurs after the initiation of translation.Abbreviations Chl chlorophyll - W Lemna plants grown in continuous white light - R plants grown heterotrophically in the dark with intermittent red light (2 min/8 h)  相似文献   
30.
A messenger RNA fraction from guinea-pig skin sediments on sucrose gradients at approx. 19 S and codes for keratin polypeptides in a messenger-dependent reticulocyte lysate system. Partial purification of this fraction was achieved by two cycles of chromatography on oligo(dT)-cellulose, followed by two cycles of sucrose gradient centrifugation. The identities of the protein products as keratins were established by co-electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, by peptide mapping, and by co-electrophoresis on two-dimensional polyacrylamide gels. All of the epidermal keratin polypeptides which are present in vivo are synthesized in vitro under the direction of this messenger. Fractionation of the messenger indicates that each different polypeptide is the product of a single mRNA species, and that no keratin is formed by proteolytic processing of higher molecular weight species or by polymerization of smaller precursors. Post-translational changes such as phosphorylation, which are known to occur in vivo, cannot be identified in the reticulocyte lysate system. Translation of these keratin messenger species is strongly inhibited by 7-methylguanosine 5′-triphosphate, indicating that the molecules have a ‘capped’ 5′-terminus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号