首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4454篇
  免费   142篇
  国内免费   533篇
  5129篇
  2023年   43篇
  2022年   36篇
  2021年   67篇
  2020年   75篇
  2019年   86篇
  2018年   77篇
  2017年   70篇
  2016年   96篇
  2015年   133篇
  2014年   152篇
  2013年   217篇
  2012年   156篇
  2011年   179篇
  2010年   173篇
  2009年   254篇
  2008年   278篇
  2007年   288篇
  2006年   269篇
  2005年   240篇
  2004年   230篇
  2003年   215篇
  2002年   167篇
  2001年   133篇
  2000年   143篇
  1999年   150篇
  1998年   138篇
  1997年   127篇
  1996年   121篇
  1995年   89篇
  1994年   88篇
  1993年   100篇
  1992年   84篇
  1991年   80篇
  1990年   65篇
  1989年   53篇
  1988年   52篇
  1987年   27篇
  1986年   14篇
  1985年   29篇
  1984年   16篇
  1983年   10篇
  1982年   17篇
  1981年   15篇
  1980年   14篇
  1979年   9篇
  1978年   5篇
  1977年   8篇
  1975年   12篇
  1974年   11篇
  1973年   7篇
排序方式: 共有5129条查询结果,搜索用时 15 毫秒
31.
Summary Maize and tomato cDNA clones have been hybridized in Southern blotting experiments to plant genomic DNA prepared from different lines to detect restriction fragment polymorphisms (RFPs). In maize we have found that a high degree of genetic variability is present, even among domestic inbred lines. Most randomly chosen maize cDNA clones can be used to detect elements of this variability. Similar levels of polymorphism are observed when genomic DNA is digested with any of a number of different restriction enzymes and probed with individual clones. When a clone is hybridized to genomic DNAs prepared from several different maize lines, a number of different alleles are often detected at a single locus. At the same time one clone can often detect more than one independently segregating locus by cross hybridization to related sequences at other loci. As expected these markers are inherited as simple codominant Mendelian alleles from one generation to the next and colinkage of these markers can be demonstrated in the progeny from a heterozygous parent. In similar studies with tomato, remarkably different results were found. Few RFPs were demonstrable among domestic Lycopersicon esculentum lines although a higher level of variability could be detected when comparing esculentum with its wild Lycopersicon relatives. These results are discussed in relation to the applied uses of RFPs in plant breeding as well as the inherent variability of different plant genomes.This work was supported in part by funds from Sandoz Ltd. (Basel, Switzerland) and its subsidiary company, Northrup King Co. (Minneapolis, Minn., U.S.A.) as well as by NSF SBIR grant #BSR-8360870.  相似文献   
32.
An indole 2,3-dioxygenase was purified ca 38-fold from maize leaves. The enzyme had an MW of about 98000, an optimum pH of 5.0 and the energy of activation was 9.1 kcal/mol. The Kmax for indole was 1.4 × 10?4 M. The enzyme was inhibited by diethyldithiocarbamate, salicylaldoxime and sodium dithionite. The inhibition by diethyldithiocarbamate was specifically reversed by Cu2+. The dialysed enzyme was stimulated by Cu2+. Four atoms of oxygen were utilized in the disappearance of 1 mole of indole. Inhibition of the enzyme by -SH compounds and -SH group inhibitors, and their partial removal by Cu2+ only, suggested the involvement of -SH groups in binding of Cu2+ at the catalytic site.  相似文献   
33.
Summary We have used the cDNA clone encoding maize glutathione-S-transferase (GST I) to isolate a genomic DNA clone containing the complete GST I gene. Nucleotide sequence analysis of the cDNA and genomic clones has yielded a complete amino acid sequence for maize GST I and provided the exon-intron map of its gene. The mRNA homologous sequences in the maize GST I gene consist of a 107 bp 5 untranslated region, a 642 bp coding region and 340 bp of the 3 untranslated region. They are divided into three exons by two introns which interrupt the coding region. The 5 untranslated spacer contains an unusual sequence of pentamer AGAGG repeated seven times. The inbred maize line (Missouri 17) contains a single gene for GST I, whereas the hybrid line (3780A) contains two genes. Nucleotide sequence analysis of the primer extended cDNA products reveals that the 5 untranslated regions of the two genes in the hybrid 3780A are identical except for a 6 bp internal deletion (or insertion). The amino acid sequence of maize GST I shares no apparent sequence homology with the published sequences of animal GST's and represents the first published sequence of a plant GST. re]19850813 ac]19851126  相似文献   
34.
Acid phosphatase purified from maize scutellum, upon acylation with succinic anhydride, still shows negative co-operativity for the hydrolysis of glucose-6-phosphate at pH 5.4. This phenomenon is abolished by glucose, for both native and succinylated enzymes, through stimulation of the initial velocities at sub-optimal substrate concentrations. However, negative co-operativity for the enzymatic hydrolysis of p-nitrophenylphosphate at pH 5.4 is suppressed only at high concentrations of glucose. Furthermore, the hydrolysis of p-nitrophenylphosphate is noncompetitively inhibited (low affinity form of the enzyme molecule) by glucose, which suggests the existence of different substrate binding sites.  相似文献   
35.
The ribulose-1,5-bisphosphate carboxylase/oxygenase purified from maize (a C4 monocot) to homogeneity has a MW of532 000 and sedimentation coeffici  相似文献   
36.
Changes in polyamine content during in vivo maturation and in vitro culture of maize (Zea mays L.) pollen were studied. The endogenous content of free, conjugated and bound polyamines was analyzed during 30 days of pollen evolution, in both developmental pathways (microsporogenesis and androgenesis). The induction of androgenesis from cold-pretreated uninucleate pollen results, in most of cases, in a lower total polyamine content than that of the in vivo uninucleate pollen. These differences indicate that polyamine metabolism is altered during the induction of androgenesis, and this could be a consequence of increased polyamine assimilation. In general, pollen stages that involve cell division (tetrades, pre-anthesis pollen and four-day cultured pollen) are characterized by a predominance of free Spd. The increase of Spd and Spm in 15-day cultured pollen, when the first embryoids are formed, outline the possible implication of these polyamines in embryogenetic processes. Furthermore, these findings may contribute to the improvement of maize androgenesis yield, especially in recalcitrant genotypes, by the exogenous application of polyamines or polyamine-inhibitors to the culture medium.Abbreviations PAs polyamines - Put putrescine - Spd spermidine - Spm spermine - S free polyamine fraction - SH conjugated polyamine fraction - PH bound polyamine fraction  相似文献   
37.
38.
39.
Elongation, indolyl-3-acetic acid (IAA) and abscisic acid (ABA) levels, – gas chromatography-mass spectrometry quantification –, in the elongating zone were analysed for maize ( Zea mays L., Cv. LG11) roots immersed in buffer solution with or without zeatin (Z). The effect of Z depends on the initial extension rate of roots. The slower growing roots are more strongly inhibited by Z (10−7−10−5 M ) and they show a greater increase in IAA and ABA content. When compared to the rapidly growing roots, the larger reactivity of the 'slow'ones cannot be attributed to a higher Z uptake as shown when using [14C]-Z. It is suggested that Z could regulate root elongation by acting on the IAA and/or ABA level. The comparative action of these two hormones is discussed.  相似文献   
40.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号