首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4455篇
  免费   143篇
  国内免费   531篇
  2023年   43篇
  2022年   36篇
  2021年   67篇
  2020年   75篇
  2019年   86篇
  2018年   77篇
  2017年   70篇
  2016年   96篇
  2015年   133篇
  2014年   152篇
  2013年   217篇
  2012年   156篇
  2011年   179篇
  2010年   173篇
  2009年   254篇
  2008年   278篇
  2007年   288篇
  2006年   269篇
  2005年   240篇
  2004年   230篇
  2003年   215篇
  2002年   167篇
  2001年   133篇
  2000年   143篇
  1999年   150篇
  1998年   138篇
  1997年   127篇
  1996年   121篇
  1995年   89篇
  1994年   88篇
  1993年   100篇
  1992年   84篇
  1991年   80篇
  1990年   65篇
  1989年   53篇
  1988年   52篇
  1987年   27篇
  1986年   14篇
  1985年   29篇
  1984年   16篇
  1983年   10篇
  1982年   17篇
  1981年   15篇
  1980年   14篇
  1979年   9篇
  1978年   5篇
  1977年   8篇
  1975年   12篇
  1974年   11篇
  1973年   7篇
排序方式: 共有5129条查询结果,搜索用时 15 毫秒
111.
Mesophyll and bundle sheath cells of maize leaves ( Zea mays L.) both contain the enzymes ascorbate peroxidase (AP; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) which are involved in hydrogen peroxide detoxification. Since bundle sheath cells of maize are deficient in photosystem II and have high CO2 levels, oxidative stress may be less severe in these cells than in mesophyll cells. The present study was conducted to determine if AP and GR activity levels preferentially increase in mesophyll cells relative to bundle sheath cells when plants are subjected to moderate drought. Although drought inhibited the growth of greenhouse-grown plants, it did not affect the levels of protein, chlorophyll or AP. GR was unaffected by drought in whole leaf tissue and mesophyll cells, but did increase slightly in bundle sheath cells. This slight increase is of questionable biological importance. AP and GR activity levels were similar in mesophyll cells, bundle sheath cells and in whole leaf tissue. The data suggest that moderate drought has little effect on enzymes of the hydrogen peroxide scavenging system and that mesophyll and bundle sheath cells may be exposed to similar levels of hydrogen peroxide.  相似文献   
112.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   
113.
The influx and efflux of organic acids across the root-soil interface were investigated in intact, sterile maize (Zea mays L.) roots under a variety of experimental conditions. Under nutrient-sufficient conditions the efflux of organic acids was shown to constitute < 1% of the total C lost across the root-soil interface. Under severe nutrient stress, however, the rates of malate and citrate efflux from the root increased 33 and 12 fold respectively. Influx experiments indicated that roots could not directly reabsorb citrate-Fe3+ or other metal complexes from solution. Influx of citrate was observed only at high external citrate concentration ( 1 mM) or from solutions with low ionic strengths. It was postulated that citrate influx is of little importance in a soil environment.  相似文献   
114.
A comparative study of polyamine (putrescine, spermidine and spermine) levels was conducted with maize calli originating from a) immature embryos and b) pollen embryos capable of plant regeneration. The differences observed in the studied parameters of the two kinds of calluses are related to their cellular origin and to their regeneration capacity. Moreover, only the calluses proceeding from immature embryos differentiated into preembryogenic structures, which eventually developed into plants. Although total polyamine levels in pollenderived calluses were significantly higher than those from immature embryos, spermidine and spermine were the predominant polyamines in both culture types. Furthermore, polyamine fractions of these calluses also showed differences. All these phenomena may be related with the differences observed in the callus embryogenic response. These findings may be useful in understanding the implication of polyaminesin embryogenetic processes.Abbreviations IEC immature-embryo calluses - PAs polyamines - PEC pollen-embryo calluses - PH insoluble conjugated PA fraction - Put putrescine - S free PA fraction - SH soluble conjugated PA fraction - Spd spermidine - Spm spermine 2,4d-2,4 dichlorophenoxyacetic acid  相似文献   
115.
116.
117.
高必需氨基酸转基因马铃薯的研究   总被引:8,自引:0,他引:8  
80年代以来,马铃薯遗传转化系统日趋成熟,转基因工程植株已被广泛应用于基础科学研究[1]。作为食物蛋白和能量主要来源的马铃薯,提高其蛋白质含量及质量的遗传工程研究正受到人们的普遍关注[2]。Yang等[2]将旨在改善氨基酸平衡的CAT-HEAAE(氯酶素乙酰转移酶-高含量人体必需氨基酸)融合基因导入马铃薯,获得了Southernblot、Northernblot、Westernblot的证据,但尚缺少氨基酸分析的资料。玉米醇溶蛋白(zein)[3]是一个富含甲硫氨酸的贮存蛋白,它和人工合成的HE…  相似文献   
118.
A greenhouse experiment was carried out to investigate the influence of the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on metabolic changes in tropical maize (Zea mays L.) under drought. Two cultivars, Tuxpeno sequia CO (drought sensitive) and C8 (drought resistant), were subjected for 3 weeks to water stress following tasselling (75–95 days after sowing). Fully expanded 7th or 8th leaves were sampled and assessed for levels of chlorophyll, sugars, proteins, and amino acids. Chlorophyll content was not altered either by water stress or the presence of mycorrhizae. Mycorrhizal plants (M+) had higher total and reducing sugars than nonmycorrhizal plants (M-) at the end of 3 weeks of the drought cycle. An increase in protein content was observed with drought stress in M + plants of the cultivar C0. Most of the amino acids showed a linear increase during the period of water stress in M+ and M- plants for both cultivars. Total amino acids increased by 40.6% and 43.7% in M- plants of C0 and C8, respectively. With the presence of AM fungus, amino acid levels increased by only 10.7% and 19.2% of leaf dry mass in C0 and C8, respectively. Alanine, asparagine, glutamine, and glycine accounted for 70% of the amino acid pool. Under drought, AM inoculation enabled the plants to retain considerable amounts of sugars and proteins, especially in the drought-sensitive cultivar C0. This may be of physiological importance in helping the plant to withstand moderate drought.  相似文献   
119.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   
120.
The endoplasmic reticulum from maize coleoptiles elongates stearoyl-CoA more effectively than the plasmalemma-enriched fraction. The alkane and very lo  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号