首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   841篇
  免费   6篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   40篇
  2014年   116篇
  2013年   93篇
  2012年   129篇
  2011年   192篇
  2010年   148篇
  2009年   12篇
  2008年   22篇
  2007年   10篇
  2006年   12篇
  2005年   16篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有847条查询结果,搜索用时 31 毫秒
91.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   
92.
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca2+ binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca2+ but not Mg2+ and undergoes significant conformational changes in both secondary and tertiary structure upon Ca2+ binding. The Ca2+-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca2+-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.  相似文献   
93.
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.  相似文献   
94.
We previously identified a novel polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) gene, which is designated Williams-Beuren syndrome chromosome region 17 (WBSCR17) because it is located in the chromosomal flanking region of the Williams-Beuren syndrome deletion. Recent genome-scale analysis of HEK293T cells treated with a high concentration of N-acetylglucosamine (GlcNAc) demonstrated that WBSCR17 was one of the up-regulated genes possibly involved in endocytosis (Lau, K. S., Khan, S., and Dennis, J. W. (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8, 3294-3302). To assess its roles, we first expressed recombinant WBSCR17 in COS7 cells and demonstrated that it was N-glycosylated and localized mainly in the Golgi apparatus, as is the case for the other GalNAc-Ts. Assay of recombinant WBSCR17 expressed in insect cells showed very low activity toward typical mucin peptide substrates. We then suppressed the expression of endogenous WBSCR17 in HEK293T cells using siRNAs and observed phenotypic changes of the knockdown cells with reduced lamellipodium formation, altered O-glycan profiles, and unusual accumulation of glycoconjugates in the late endosomes/lysosomes. Analyses of endocytic pathways revealed that macropinocytosis, but neither clathrin- nor caveolin-dependent endocytosis, was elevated in the knockdown cells. This was further supported by the findings that the overexpression of recombinant WBSCR17 stimulated lamellipodium formation, altered O-glycosylation, and inhibited macropinocytosis. WBSCR17 therefore plays important roles in lamellipodium formation and the regulation of macropinocytosis as well as lysosomes. Our study suggests that a subset of O-glycosylation produced by WBSCR17 controls dynamic membrane trafficking, probably between the cell surface and the late endosomes through macropinocytosis, in response to the nutrient concentration as exemplified by environmental GlcNAc.  相似文献   
95.
Receptor down-modulation is the key mechanism by which G protein-coupled receptors (GPCRs) prevent excessive receptor signaling in response to agonist stimulation. Recently, the trans-Golgi network (TGN) has been implicated as a key checkpoint for receptor endocytosis and degradation. Here, we investigated the involvement of the TGN in down-modulation of β1-adrenergic receptor in response to persistent isoprotenerol stimulation. Immunofluorescent staining showed that ~50% of endocytosed β1AR colocalized with TGN-46 at 5 h. Disruption of the TGN by brefeldin A (BFA) led to the robust accumulation of endocytosed β1AR in Rab11(+) recycling endosomes, inhibited β1AR entry into LAMP1(+) lysosomes, and as a result enhanced β1AR recycling to the plasma membrane. The lysosomotropic agent, chloroquine, arrested the majority of endocytosed β1AR in the TGN by 4 h. Immunoblot analysis showed that either disruption of the TGN or blockage of the lysosome prevented β1AR degradation. Co-expression of GFP-arrestin-3 in β1AR cells increased the endocytosis of β1AR and facilitated its entry to the TGN but inhibited recycling to the plasma membrane. Arrestin-3-induced inhibition of β1AR recycling was reversed by BFA treatment, whereas chloroquine induced the accumulation of arrestin-3 with β1AR in the TGN. These results demonstrate for the first time that the TGN acts as a checkpoint for both the recycling and down-regulation of β1AR and that arrestin-3 not only mediates β1AR endocytosis but also its recycling through the TGN.  相似文献   
96.
Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.  相似文献   
97.
The epithelial sodium channel (ENaC) plays an important role in the homeostasis of blood pressure and of the airway surface liquid, and inappropriate regulation of ENaC results in refractory hypertension (in Liddle syndrome) and impaired mucociliary clearance (in cystic fibrosis). The regulation of ENaC by molecular chaperones, such as the 70-kDa heat shock protein Hsp70, is not completely understood. Building on the previous suggestion by our group that Hsp70 promotes ENaC functional and surface expression in Xenopus oocytes, we investigated the mechanism by which Hsp70 acts upon ENaC in epithelial cells. In Madin-Darby canine kidney cells stably expressing epitope-tagged αβγ-ENaC and with tetracycline-inducible overexpression of Hsp70, treatment with 1 or 2 μg/ml doxycycline increased total Hsp70 expression ~2-fold and ENaC functional expression ~1.4-fold. This increase in ENaC functional expression corresponded to an increase in ENaC expression at the apical surface of the cells and was not present when an ATPase-deficient Hsp70 was similarly overexpressed. The increase in functional expression was not due to a change in the rate at which ENaC was retrieved from the apical membrane. Instead, Hsp70 overexpression increased the association of ENaC with the Sec24D cargo recognition component of coat complex II, which carries protein cargo from the endoplasmic reticulum to the Golgi. These data support the hypothesis that Hsp70 promotes ENaC biogenesis and trafficking to the apical surface of epithelial cells.  相似文献   
98.
The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression.  相似文献   
99.
TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and cause autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartments of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2 and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs.  相似文献   
100.
A transient increase in intracellular Ca2+ is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca2+ signal during oocyte maturation. The first Ca2+ transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca2+ signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号