首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9774篇
  免费   466篇
  国内免费   834篇
  2023年   77篇
  2022年   125篇
  2021年   162篇
  2020年   160篇
  2019年   176篇
  2018年   205篇
  2017年   198篇
  2016年   193篇
  2015年   178篇
  2014年   302篇
  2013年   322篇
  2012年   216篇
  2011年   281篇
  2010年   186篇
  2009年   272篇
  2008年   324篇
  2007年   337篇
  2006年   307篇
  2005年   452篇
  2004年   606篇
  2003年   498篇
  2002年   385篇
  2001年   380篇
  2000年   284篇
  1999年   348篇
  1998年   283篇
  1997年   233篇
  1996年   300篇
  1995年   340篇
  1994年   332篇
  1993年   297篇
  1992年   285篇
  1991年   231篇
  1990年   201篇
  1989年   179篇
  1988年   189篇
  1987年   155篇
  1986年   153篇
  1985年   131篇
  1984年   126篇
  1983年   47篇
  1982年   112篇
  1981年   88篇
  1980年   100篇
  1979年   70篇
  1978年   54篇
  1977年   58篇
  1976年   49篇
  1975年   15篇
  1972年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   
22.
Summary Southern blot hybridization of total DNA to defined mitochondrial DNA sequences provides a sensitive assay for mtDNA variation in the genera of Triticum and Aegilops. A clear distinction between cytoplasms of tetraploid species sharing the AG haploid genome is reported for the first time. The Sitopsis section of the genus Aegilops showed the most extensive intra- and inter-specific variation, whereas no variation could be detected among the cytoplasms of polyploid Triticum species (wheats) sharing the AB haploid genome. Extensive cytoplasmic intraspecific diversity was revealed in Ae. speltoides.  相似文献   
23.
Between 1981–83 the gut contents ofDaphnia galeata, D. cucullata, Eudiaptomus gracilis, andCyclops vicinus were examined with light and scanning electron microscope to obtain information on the feeding of these species in Lake Balaton. The twoDaphnia species feed mainly on abioseston, and it is assumed that their primary nutrient source was organic matter adsorbed onto the surfaces of the abioseston granules plus bacteria and detritus.E. gracilis feeds on algae, showing a preference for green algae and diatoms.C. vicinus is also a prodigious consumer of algae in Lake Balaton, utilizing the whole size spectrum of phytoplankton. Concerning the trophic relationships between phytoplankton and zooplankton in Lake Balaton, that between diatoms and bothE. gracilis andC. vicinus is the most conspicouos. Convincing evidence for an extensive utilization of blue-green algae was not found. Though there is no firm evidence yet, it is likely that theDaphnia are dependent on organic matter adsorbed on the abioseston.  相似文献   
24.
Summary Taste discs were dissected from the tongue ofR. ridibunda and their cells dissociated by a collagenase/low Ca/mechanical agitation protocol. The resulting cell suspension contained globular epithelial cells and, in smaller number, taste receptor cells. These were identified by staining properties and by their preserved apical process, the tip of which often remained attached to an epithelial (associated) cell. When the patch pipette contained 110mm KCl and the cells were superfused with NaCl Ringer's during whole-cell recording, the mean zero-current potential of 22 taste receptor cells was –65.2 mV and the slope resistance 150 to 750 M. Pulse-depolarization from a holding voltage of –80 mV activated a transient TTX-blockable inward Na current. Activation became noticeable at –25 mV and was half-maximal at –8 mV. Steady-state inactivation was half-maximal at –67 mV and complete at –50 mV. Peak Na current averaged –0.5 nA/cell. The Ca-ionophore A23187 shifted the activation and inactivation curve to more negative voltages. Similar shifts occurred when the pipette Ca was raised. External Ni (5mm) shifted the activation curve towards positive voltages by 10 mV. Pulse depolarization also activated outward K currents. Activation was slower than that of Na current and inactivation slower still. External TEA (7.5mm) and 4-aminopyridine (1mm) did not block, but 5mm Ba blocked the K currents. K-tail currents were seen on termination of depolarizing voltage pulses. A23187 shifted theI K(V)-curve to more negative voltages. Action potentials were recorded when passing pulses of depolarizing outward current. Of the frog gustatory stimulants, 10mm Ca caused a reversible 5-to 10-mV depolarization in the current-clamp mode. Quinine (0.1mm, bitter) produced a reversible depolarization accompanied by a full block of Na current and, with slower time-course, a partial block of K currents. Cyclic AMP (5mm in the external solution or 0.5 m in the pipette) caused reversible depolarization (to –40 to –20 mV) due to partial blockage of K currents, but only if ATP was added to the pipette solution. Similar responses were elicited by stimulating the adenylate cyclase with forskolin. Blockage of cAMP-phosphodiesterase enhanced the response to cAMP. These results suggest that cAMP may be one of the cytosolic messengers in taste receptor cells. Replacement of ATP by AMP-PNP in the pipette abolished the depolarizing response to cAMP. Inclusion of ATP--S in the pipette caused slow depolarization to –40 to –20 mV, due to partial blockage of K currents. Subsequently, cAMP was without effect. The remaining K currents were blockable by Ba. These results suggest that cAMP initiates phosphorylation of one set of K channels to a nonconducting conformation.  相似文献   
25.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   
26.
Recent studies by DNA-DNA hybridization revealed that strains now designated as L. acidophilus, can be divided into several groups and only one group should be classified as L. acidophilus. We studied several phenotypic characteristics in representative strains from the six DNA-homology groups of L. acidophilus. No group specific pattern was observed among the strains for fermentation of eight carbohydrates, growth at 15 and 45°C, resistance to 0.2% oxgall, lysis by lysozyme or sensitivity to 17 antibiotics. However, some differences among groups were observed in -galactosidase (-gal) activity and surface layer (s-layer) protein. Strains in B1 do not have a s-layer or -gal while B2 strains also lack a s-layer but do possess -gal. All strains in groups A1, A2, A3 and A4, capable of growing in lactose, have -gal activity and also have a s-layer composed of protein subunits of different molecular weights (MW). Strains in A1 homology group have a s-layer with 46 Kd protein subunits while strains in other A groups have s-layer protein subunits that varied in MW within each group. On the basis of these two traits several isolates of unknown homology groups have been tentatively placed in A1, B1 or B2 groups. L. acidophilus from A1 group showed strain variation in -gal specific activity and rate of acid production and growth. For use in dietary adjuncts, L. acidophilus strains should be selected for these three and other desirable traits. They should be maintained and grown in media containing lactose.  相似文献   
27.
A gene (Bmn) with a major effect on -mannosidase activity in kidney and liver of the house mouse was revealed by assay with the synthetic substratep-nitrophenyl--d-mannoside. Activity is low in DBA/2J and CSB mice and high in C57BL/6J mice. By the use of the BXD series of recombinant inbred strains and by crosses between C57BL and CSB, it was possible to map the gene to the distal part of chromosome 3 by demonstration of linkage to a gene for cadmium resistance,cdm, as well as to theAdh-3 locus.This work was supported by Swedish Natural Science Research Council Project B-BU 2992-108.  相似文献   
28.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   
29.
The bacterial protein staphylocoagulase binds stoichiometrically to human prothrombin, resulting in a coagulant complex, staphylothrombin. The enzymatic properties of staphylothrombin differ from those of -thrombin in their substrate specificities toward natural and synthetic substrates, in addition to their interaction with protease inhibitors. In order to obtain information about the region of staphylocoagulase that interacts with human prothrombin, staphylocoagulase was cleaved by -chymotrypsin. Limited -chymotryptic cleavage of staphylocoagulase yielded three large fragments, of 43, 30, and 20 kD. The 43-kD fragment exhibited a high affinity for human prothrombin (Kd=1.7 nM), which is comparable to the affinity observed using intact staphylocoagulase (Kd=0.46 nM). A complex of the 43-kD fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. The 30-kD fragment exhibited weaker affinity for prothrombin (Kd=120 nM.) While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. The 20-kD fragment was found only to bind to prothrombin. The NH2-terminal sequence analyses of these fragments revealed that the 43-kD fragment constitutes the NH2-terminal portion of staphylocoagulase, and contains the 30-kD and 20-kD fragments. It is therefore concluded that the functional region of staphylocoagulase for binding and activation of prothrombin is localized in the NH2-terminal region of the intact protein. The 43-kD fragment contained 324 amino acids with a molecular weight of 38,098. The 43-kD fragment had an unusual amino acid composition based on a sequence in which the sum of Asp (28 residues), Asn (22), Glu (35), Gln (9), and Lys (52) residues accounted for more than 45% of the total. A comparison of the amino acid sequence of the 43-kD fragment with that of streptokinase did not reveal any obvious sequence homology. There was also no sequence homology with that of trypsin, -chymotrypsin, and elastase.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
30.
Acid -l-fucosidase (EC 3.2.1.51) was obtained from human liver and purified to homogeneity. The enzyme consists of four subunits; each of these has a molecular mass of 50 kDa and bears oneN-linked carbohydrate chain. The structures of these chains were studied at the glycopeptide level by methylation analysis and 500-MHz1H-NMR spectroscopy. Oligomannoside-type chains andN-acetyllactosamine-type chains are present in an approximate ratio of 31. While the oligomannoside-type chains show some heterogeneity in size (Man5–8GlcNAc2), theN-acetyllactosaminetype chains are exclusively bi-(2–6)-sialyl, bi-antennary in their structure.These observations on the carbohydrate moieties of -l-fucosidase substantiate our hypothesis [Overdijket al. (1986) Glycoconjugate J 3:339–50] with respect to the relationship between the oligosaccharide structure of lysosomal enzymes and their residual intracellular activity in I-cell disease. For the series of enzymes examined so far, namely, -N-acetylhexosaminidase, -l-fucosidase and -galactosidase, the relative amount ofN-acetyllactosamine-type carbohydrate increases, while the residual intracellular activity in I-cell disease tissue decreases in this order. The system which is responsible for preferentially retaining hydrolases with (non-phosphorylated) oligomannoside-type chains both in I-cells and in normal cells has yet to be identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号