首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11482篇
  免费   296篇
  国内免费   102篇
  2023年   84篇
  2022年   114篇
  2021年   156篇
  2020年   151篇
  2019年   225篇
  2018年   252篇
  2017年   154篇
  2016年   157篇
  2015年   178篇
  2014年   657篇
  2013年   763篇
  2012年   392篇
  2011年   856篇
  2010年   643篇
  2009年   688篇
  2008年   658篇
  2007年   726篇
  2006年   621篇
  2005年   685篇
  2004年   484篇
  2003年   343篇
  2002年   376篇
  2001年   137篇
  2000年   140篇
  1999年   149篇
  1998年   137篇
  1997年   143篇
  1996年   129篇
  1995年   130篇
  1994年   108篇
  1993年   127篇
  1992年   106篇
  1991年   101篇
  1990年   103篇
  1989年   73篇
  1988年   61篇
  1987年   54篇
  1986年   49篇
  1985年   54篇
  1984年   172篇
  1983年   102篇
  1982年   85篇
  1981年   83篇
  1980年   70篇
  1979年   63篇
  1978年   33篇
  1977年   31篇
  1976年   18篇
  1975年   20篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structure at low- and high resolution. Since electron micrographs of biological objects are very noisy, substantial improvement of image quality can be obtained by averaging individual projections. Crystallographic and noncrystallographic averaging methods are available and have been applied to study projections of the large protein complexes embedded in photosynthetic membranes from cyanobacteria and higher plants. Results of EM on monomeric and trimeric Photosystem I complexes, on monomeric and dimeric Photosystem II complexes, and on the monomeric cytochromeb6/f complex are discussed.  相似文献   
132.
A review of a recent study of the spectral and thermodynamic properties of cytochrome b559 as well as of the electron transfer between b559 and photosystem II reaction center cofactors in isolated D1/D2/cytochrome b559 complex RC-2 is presented. Attention is paid to the existence of intermediary-potential (IP, +150 mV) and extra-low-potential (XLP, –45 mV) hemes located close to the acceptor (quinone) and donor (P680) sides of the reaction center cofactors, respectively. These hemes found in isolated RC-2 probably correspond to the high-potential and low-potential hemes in chloroplasts, respectively. The above location of the hemes is believed to allow the photoreduction of the XLP heme and photooxidation of the IP heme. The electron transfer between the two hemes is discussed in terms of the cyclic electron flow and possible involvement in water splitting.  相似文献   
133.
Recently, it has been suggested (Horton et al. 1992) that aggregation of the light-harvesting a-b complex (LHC II) in vitro reflects the processes which occur in vivo during fluorescence induction and related to the major non-photochemical quenching (qE). Therefore the requirement of this chlorophyll a-b containing protein complex to produce qN was investigated by comparison of two barley mutants either lacking (chlorina f2) or depressed (chlorina104) in LHC II to the wild-type and pea leaves submitted to intermittent light (IL) and during their greening in continuous light. It was observed that qN was photoinduced in the absence of LHC II, i.e. in IL grown pea leaves and the barley mutants. Nevertheless, in these leaves qN had no (IL, peas) or little (barley mutants) inhibitory effect on the photochemical efficiency of QA reduction measured by flash dosage response curves of the chlorophyll fluorescence yield increase induced by a single turn-over flash During greening in continuous light of IL pea leaves, an inhibitory effect on QA photoreduction associated to qN developed as Photosystem II antenna size increased with LHC II synthesis. Utilizing data from the literature on connectivity between PS II units versus antenna size, the following hypothesis is put forward to explain the results summarized above. qN can occur in the core antenna or Reaction Center of a fraction of PS II units and these units will not exhibit variable fluorescence. Other PS II units are quenched indirectly through PS II-PS II exciton transfer which develops as the proportion of connected PS II units increases through LHC II synthesis.  相似文献   
134.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   
135.
We propose yet another function for the unique appressed thylakoids of grana stacks of higher plants, namely that during prolonged high light, the non-functional, photoinhibited PS II centres accumulate as D1 protein degradation is prevented and may act as dissipative conduits to protect other functional PS II centres. The need for this photoprotective mechanism to prevent high D1 protein turnover under excess photons in higher plants, especially those grown in shade, is due to conflicting demands between efficient use of low irradiance and protection from periodic exposure to excessive irradiance.  相似文献   
136.
Fertile transgenic barley by particle bombardment of immature embryos   总被引:5,自引:0,他引:5  
Transgenic, fertile barley (Hordeum vulgare L.) from the Finnish elite cultivar Kymppi was obtained by particle bombardment of immature embryos. Immature embryos were bombarded to the embryonic axis side and grown to plants without selection. Neomycin phosphotransferase II (NPTII) activity was screened in small plantlets. One out of a total of 227 plants expressed the transferred nptII gene. This plant has until now produced 98 fertile spikes (T0), and four of the 90 T0 spikes analyzed to date contained the nptII gene. These shoots were further analyzed and they expressed the transferred gene. From green grains, embryos were isolated and grown to plantlets (T1). The four transgenic shoots of Toivo (the T0 plant) produced 25 plantlets as T1 progeny. Altogether fifteen of these T1 plants carried the transferred nptII gene as detected with the PCR technique, fourteen of which expressed the nptII gene. The integration and inheritance of the transferred nptII gene was confirmed by Southern blot hybridization. Although present as several copies, the transferred gene was inherited as a single Mendelian locus into the T2 progeny.  相似文献   
137.
The psbO gene of cyanobacteria, green algae and higher plants encodes the precursor of the 33 kDa manganese-stabilizing protein (MSP), a water-soluble subunit of photosystem II (PSII). Using a pET-T7 cloning/expression system, we have expressed in Escherichia coli a full-length cDNA clone of psbO from Arabidopsis thaliana. Upon induction, high levels of the precursor protein accumulated in cells grown with vigorous aeration. In cells grown under weak aeration, the mature protein accumulated upon induction. In cells grown with moderate aeration, the ratio of precursor to mature MSP decreased as the optical density at induction increased. Both forms of the protein accumulated as inclusion bodies from which the mature protein could be released under mildly denaturing conditions that did not release the precursor. Renatured Arabidopsis MSP was 87% as effective as isolated spinach MSP in restoring O2 evolution activity to MSP-depleted PSII membranes from spinach; however, the heterologous protein binds to spinach PSIIs with about half the affinity of the native protein. We also report a correction to the previously published DNA sequence of Arabidopsis psbO (Ko et al., Plant Mol Biol 14 (1990) 217–227).  相似文献   
138.
The relationship between the size of the light harvesting antenna to photosystem II (LHCII) and quenching of non-photochemical and dark level fluorescence was studied in wild-type rye (Secale cereale L. cv. Musketeer) and barley (Hordeum vulgare L. cv. Gunilla) as well as in the barley chlorophyll b-less chlorina F2 mutant (H. vulgare L. cv. Dornaria, chlorina-F2). Exposure for 10 min to an irradiance of 500 μmol m?2 s?1 resulted in a strong (0.71–0.73) non-photochemical (qs) quenching of the fluorescence yield in wild-type (WT) material, while the barley chlorina F2-mutant was quenched to 75% of this level. Relaxation of qs in darkness revealed a fast initial decay, related to relaxation of the high-energy-state dependent (qE) part of qs. Etiolated seedlings of rye and barley exposed to intermittent light (IML) for 36 cycles of 2 min light and 118 min darkness had suppressed Chl b and LHCII-production in both WT rye and barley, while the barley chlorina F2-mutant became totally devoid of all LHCII-polypeptides. It was found that the levels of qs and qs were similar in control grown barley chlorina F2 and IML-grown WT rye and barley, but qs was reduced by 30 to 35% and qs by 50 to 65%, respectively, as compared to control-grown. WT plants. No significant qs could be detected in IML-grown barley chlorina F2. It is clear, from these changes in in vivo fluorescence quenching in rye and barley that a significant level of qs is detectable even in the absence of LHCII. Only when the proximal antennae are totally absent, does qE completely disappear. We conclude that the presence of LHCII is not an absolute requirement for qE-quenching and suggest that distal as well as proximal antenna may contribute to qE in vivo.  相似文献   
139.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   
140.
Severely yellowed ten-year-old spruce trees growing in the Vosges Mountains on an acidic soil were fertilised with Magnesium lime during the spring of 1990. The effects of this treatment were assessed 18 months later. A very significant improvement of the mineral status of the trees was detected, with increasing Mg contents in the needles, and as a consequence, reduced yellowing and improved chlorophyll content. Only slight differences with control trees were observed for height increase. Effects of this improved nutrition on photosynthesis were tested measuring net CO2 assimilation rates and chlorophyll a fluorescence. Light-saturated net assimilation rates of current-year needles were high, reaching 5.3 mol m–2 s–1 on a total needle area basis. The improvement in chlorophyll and Mg content had no significant effect on net assimilation rates or on any parameter describing photochemical functions of both current-and previous-year needles. Despite the strong inter-individual variability in needle chlorophyll and Mg contents (ranging from 0.2 to 0.8 mg g–1 fresh weight, and 0.05 to 0.5 mg g-1 dry weight respectively), photochemical efficiency of PS II under limiting irradiance only decreased significantly on older needles displaying Mg contents below 0.1 mg g–1. It is concluded from these results that spruce trees exhibit a high degree of plasticity with regard to Mg deficiency on acidic soils, and that improved Mg nutrition and increased chlorophyll content do not necessarily improve photosynthesis and height growth.Abbreviations A light-saturated net CO2 assimilation rate (mol m–2 s–1) - gw light-saturated needle conductance to water vapour (mmol m–2 s–1) - wp and wm pre-dawn and mid-day needle water potential (MPa) - osmotic potential of sap expressed from needles (MPa) - PFD photosynthetic photon flux density (mol m–2 s–1) - Fv/Fm photochemical efficiency of PS II after 20 min dark adaptation - F/Fm ' photochemical efficiency of PS II reaction centres after 10 min at a PFD of 220 mol m–2 s–1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号