首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52064篇
  免费   17811篇
  国内免费   514篇
  2024年   21篇
  2023年   198篇
  2022年   324篇
  2021年   761篇
  2020年   3096篇
  2019年   4674篇
  2018年   4932篇
  2017年   4810篇
  2016年   4597篇
  2015年   4556篇
  2014年   4467篇
  2013年   5069篇
  2012年   4078篇
  2011年   4325篇
  2010年   3773篇
  2009年   2719篇
  2008年   2915篇
  2007年   2297篇
  2006年   2313篇
  2005年   1947篇
  2004年   1568篇
  2003年   1638篇
  2002年   1422篇
  2001年   1034篇
  2000年   583篇
  1999年   409篇
  1998年   164篇
  1997年   171篇
  1996年   150篇
  1995年   146篇
  1994年   105篇
  1993年   123篇
  1992年   97篇
  1991年   81篇
  1990年   65篇
  1989年   71篇
  1988年   61篇
  1987年   52篇
  1986年   50篇
  1985年   78篇
  1984年   103篇
  1983年   82篇
  1982年   72篇
  1981年   49篇
  1980年   56篇
  1979年   46篇
  1978年   16篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
932.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massonianaL. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment.  相似文献   
933.
Resistance of the melon line TGR‐1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross‐sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron‐dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results.  相似文献   
934.
Inbreeding depression plays a major role in shaping mating systems: in particular, inbreeding avoidance is often proposed as a mechanism explaining extra‐pair reproduction in socially monogamous species. This suggestion relies on assumptions that are rarely comprehensively tested: that inbreeding depression is present, that higher kinship between social partners increases infidelity, and that infidelity reduces the frequency of inbreeding. Here, we test these assumptions using 26 years of data for a cooperatively breeding, socially monogamous bird with high female infidelity, the superb fairy‐wren (Malurus cyaneus). Although inbred individuals were rare (~6% of offspring), we found evidence of inbreeding depression in nestling mass (but not in fledgling survival). Mother–son social pairings resulted in 100% infidelity, but kinship between a social pair did not otherwise predict female infidelity. Nevertheless, extra‐pair offspring were less likely to be inbred than within‐pair offspring. Finally, the social environment (the number of helpers in a group) did not affect offspring inbreeding coefficients or inbreeding depression levels. In conclusion, despite some agreement with the assumptions that are necessary for inbreeding avoidance to drive infidelity, the apparent scarcity of inbreeding events and the observed levels of inbreeding depression seem insufficient to explain the ubiquitous infidelity in this system, beyond the mother–son mating avoidance.  相似文献   
935.
936.
Mitochondria play a critical role in cell death by releasing apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), from the intermembrane space into the cytoplasm. Because mitochondrial dysfunction has been shown to be involved in several neurodegenerative diseases, mitochondrial toxins are largely used to model these disorders. These include 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, which has been used to model Huntington's disease and was previously reported by us to induce apoptotic cell death through caspase activation. In the present study, we evaluated the involvement of caspase-independent neuronal cell death induced by 3-NP (1 mM) and the effect of z-VDVAD-fmk, an inhibitor of caspase-2, using cortical neurons in culture. Our results highly suggest that 3-NP induces both caspase-dependent and -independent cell death. We showed that z-VDVAD-fmk prevented both caspase-2 and -3-like activities evoked by 3-NP, but only partly prevented chromatin fragmentation/condensation. However, z-VDVAD-fmk did not avoid 3-NP-induced release of cytochrome c or AIF from mitochondria nor did it affect the levels of mitochondrial Bax. Furthermore, 3-NP-mediated decrease in plasma membrane integrity was not affected by z-VDVAD-fmk. Under these conditions, the inhibitor prevented the caspase-dependent cell death.  相似文献   
937.
During murine embryonic development, primitive hematopoiesis occurs in the yolk sac (YS). Recent studies have shown that the YS also harbors definitive hematopoietic activity. However, the population of YS cells contributing to definitive hematopoiesis has not been identified. In this study, we characterized the hematopoietic cell populations in the YS of mouse embryos from E9.5 to E14.5 in view of the expression profiles of CD45 and c-Kit. The YS cells from E9.5 to E11.5 could be divided into six populations: CD45(-) c-Kit(-) , CD45(-) c-Kit(low) , CD45(-) c-Kit(high) , CD45(low) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) . Among these populations, CD45(low) c-Kit(high) cells showed the highest multilineage hematopoietic colony-forming activity. Later in development, the YS cells from E12.5 to E14.5 lost the second and fourth populations (i.e., they retained CD45(-) c-Kit(-) , CD45(-) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) cells), and concurrently with the disappearance of the CD45(low) c-Kit(high) population, no significant hematopoietic activity was found in any of the populations on and after E12.5. CD45(low) c-Kit(high) YS cells, which had a round morphology with a large nucleus, possessed the ability to differentiate into myeloid and B lymphoid cells when cultured with stromal cells. These findings suggest that CD45(low) c-Kit(high) YS cells include more undifferentiated cells than the other YS cell populations and possess in vitro potency to differentiate into multilineage hematopoietic cells. Furthermore, this cell population disappears from the YS at around E12.5, when the site of hematopoiesis has already shifted to the fetal liver and the placenta.  相似文献   
938.
大规模蛋白质相互作用研究的主要实验技术包括酵母双杂交技术、串联亲和纯化技术和蛋白质芯片技术,随着这些技术的不断发展和完善,科学家们在模式生物、哺乳动物、病原微生物中展开了大规模的蛋白质相互作用组研究,并进行了药物研发方面的研究,绘制了多种生物的蛋白质相互作用连锁图,揭示了多种蛋白质的新功能,为全面研究蛋白质(群)的分子作用机制、药物研发和疾病的临床预防与治疗等提供了崭新的线索。  相似文献   
939.
Ecological restoration is a globally important and well‐financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land‐use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field‐based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High‐throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost‐effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land‐use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号