首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
The Ca2+-regulatory tropomyosin-troponin complex was purified from chick embryonic muscles by a combination of DEAE-cellulose chromatography and (NH4)2SO4 fractionation. The embryonic complex was very similar to that obtained from adult chicken muscles with respect to stoichiometry of components and biological activity. Tropomyosin of embryonic skeletal muscles contains both α and β subunits, the β form being the major species. In the adult stage the β form is decreased with a concomitant increase in the α form. These results indicate that i) the Ca2+-regulatory proteins are not deficient in early embryonic muscles as previously thought (Hitchcock, S.E., Develop. Biol. 23, 399, 1970), and ii) different structural genes coding for tropomyosin subunits are expressed differentially in embryonic and adult muscle fibers.  相似文献   
22.
EF-hand calcium binding proteins (CaBPs) share strong sequence homology, but exhibit great diversity in structure and function. Thus although calmodulin (CaM) and calcineurin B (CNB) both consist of four EF hands, their domain arrangements are quite distinct. CaM and the CaM-like proteins are characterized by an extended architecture, whereas CNB and the CNB-like proteins have a more compact form. In this study, we performed structural alignments and molecular dynamics (MD) simulations on 3 CaM-like proteins and 6 CNB-like proteins, and quantified their distinct structural and dynamical features in an effort to establish how their sequences specify their structures and dynamics. Alignments of the EF2-EF3 region of these proteins revealed that several residues (not restricted to the linker between the EF2 and EF3 motifs) differed between the two groups of proteins. A customized inverse folding approach followed by structural assessments and MD simulations established the critical role of these residues in determining the structure of the proteins. Identification of the critical determinants of the two different EF-hand domain arrangements and the distinct dynamical features relevant to their respective functions provides insight into the relationships between sequence, structure, dynamics and function among these EF-hand CaBPs.  相似文献   
23.
24.
Akazara scallop (Chlamys nipponensis akazara) troponin C (TnC) of striated adductor muscle binds only one Ca2+ ion at the C-terminal EF-hand motif (Site IV), but it works as the Ca2+-dependent regulator in adductor muscle contraction. In addition, the scallop troponin (Tn) has been thought to regulate muscle contraction via activating mechanisms that involve the region spanning from the TnC C-lobe (C-lobe) binding site to the inhibitory region of the TnI, and no alternative binding of the TnI C-terminal region to TnC because of no similarity between second TnC-binding regions of vertebrate and the scallop TnIs. To clarify the Ca2+-regulatory mechanism of muscle contraction by scallop Tn, we have analyzed the Ca2+-binding properties of the complex of TnC C-lobe and TnI peptide, and their interaction using isothermal titration microcalorimetry, nuclear magnetic resonance, circular dichroism, and gel filtration chromatography. The results showed that single Ca2+-binding to the Site IV leads to a structural transition not only in Site IV but also Site III through the structural network in the C-lobe of scallop TnC. We therefore assumed that the effect of Ca2+-binding must lead to a change in the interaction mode between the C-lobe of TnC and the TnI peptide. The change should be the first event of the transmission of Ca2+ signal to TnI in Tn ternary complex.  相似文献   
25.
High density lipoproteins (HDL) protect the heart against ischemia/reperfusion (I/R) injury, and matrix metalloproteinase-2 (MMP-2) directly contributes to cardiac contractile dysfunction after I/R. To investigate the possible involvement of MMP-2 inhibition in HDL-mediated cardioprotection, isolated rat hearts underwent 20 min of low-flow ischemia and 30 min of reperfusion. Plasma-derived and synthetic HDL attenuated the I/R-induced cardiac MMP-2 activation and release in a dose-dependent way. The attenuation of I/R-induced MMP-2 activation by HDL correlated with the reduction of post-ischemic contractile dysfunction and cardiomyocyte necrosis. These results indicate prevention of MMP-2 activation as a novel mechanism for HDL-mediated cardioprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号