首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   8篇
  国内免费   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   31篇
  2013年   21篇
  2012年   28篇
  2011年   49篇
  2010年   24篇
  2009年   31篇
  2008年   33篇
  2007年   31篇
  2006年   21篇
  2005年   17篇
  2004年   19篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有457条查询结果,搜索用时 62 毫秒
131.
The peritoneal mesothelium of mouse embryos (12 to 18 day of gestation) was studied by freeze-fracture and in sections in order to reveal the initial formation of the tight junctions. Freeze-fracture observations showed three types of tight junctions. Type I consists of belt-like meshworks of elevations on the P face and of shallow grooves on the E face. No tight junctional particle can be seen either on the elevations or in the grooves. Type II shows rows of discontinuous particles on the elevations on the P face. Type III consists of strands forming ridges on the P face. On the E face, the grooves of Type II and III appear to be narrower and sharper than those of Type I. Quantitatively, Type I junctions are most numerous during the early stages (day 12-13) of embryonic development, while Type III junctions become more common in the later stages, and are the only type seen by day 18. Observations on sections, however, fail to distinguish between the three types. The results suggest that an initial sign of tight junction formation is close apposition of the two cell membranes in the junctional domain, without tight junctional particles. Later, the particles appear to be incorporated in the tight junctions and the strands form by fusion of the particles.  相似文献   
132.
133.
The intercellular tight junctions (TJs) of endothelial cells represent the limiting structure for the permeability of the blood-brain barrier (BBB). Although the BBB has been recognized as being the interface between the bloodstream and the brain, little is known about its regulation. Zonulin and its prokaryotic analogue, zonula occludens toxin (Zot) elaborated by Vibrio cholerae, both modulate intercellular TJs by binding to a specific surface receptor with subsequent activation of an intracellular signaling pathway involving phospholipase C and protein kinase C activation and actin polymerization. Affinity column purification revealed that human brain plasma membrane preparations contain two Zot binding proteins of approximately 55 and approximately 45 kDa. Structural and kinetic studies, including saturation and competitive assays, identified the 55-kDa protein as tubulin, whereas the 45-kDa protein represents the zonulin/Zot receptor. Biochemical characterization provided evidence that this receptor is a glycoprotein containing multiple sialic acid residues. Comparison of the N-terminal sequence of the zonulin/Zot receptor with other protein sequences by BLAST analysis revealed a striking similarity with MRP-8, a 14-kDa member of the S-100 family of calcium binding proteins. The discovery and characterization of this receptor from human brain may significantly contribute to our knowledge on the pathophysiological regulation of the BBB.  相似文献   
134.
Alpha-dystrobrevin (-DB) has been described primarily as a cytoplasmic component of the dystrophin-glycoprotein complex in skeletal muscle cells. Isoforms of -DB show different localization in cells and tissues; at basolateral membranes in epithelial cells, dystrobrevins mediate contact with the extracellular matrix, peripheral and transmembrane proteins and the filamentous actin cytoskeleton. Beside their structural role, -DBs are assumed to be important in cell signalling and cell differentiation. We have primarily assessed the role of -DB in two epithelial cell lines (MDCK I, HT 29), which represent different developmental stages and exhibit distinct permeability characteristics. Using a polyclonal anti--DB antibody, we have investigated its expression, localization and association with tight junction (TJ)- associated proteins (ZO-1, occludin) before and after protein kinase C (PKC) activation with phorbol myristate acetate. Distinct subsets of -DB isoforms were detected in the two cell lines by immunoblotting. In both cell lines there was submembranous localization of -DB both apically and basolaterally, shown with confocal imaging. PKC activation caused a reorganization of TJ, which was parallel to increased localization of -DB to TJ areas, most pronounced in MDCK I cells. Moreover, actin and ZO-1 co-immunoprecipitated with a-DB, as displayed with immunoblotting. Our findings suggest that a-dystrobrevin specifically is associated with the tight junctions during their reorganization.  相似文献   
135.
Epithelia in multicellular organisms constitute the frontier that separates the individual from the environment. Epithelia are sites of exchange as well as barriers, for the transit of ions and molecules from and into the organism. Therapeutic agents, in order to reach their target, frequently need to cross epithelial and endothelial sheets. Two routes are available for such purpose: the transcellular and the paracellular pathways. The former is employed by lipophilic drugs and by molecules selectively transported by channels, pumps and carriers present in the plasma membrane. Hydrophilic molecules cannot cross biological membranes, therefore their transepithelial transport could be significantly enhanced if they moved through the paracellular pathway. Transit through this route is regulated by tight junctions (TJs). The discovery in recent years of the molecular mechanisms of the TJ has allowed the design of different procedures to open the paracellular route in a reversible manner. These strategies could be used to enhance drug delivery across epithelial and endothelial barriers. The procedures employed include the use of peptides homologous to external loops of integral TJ proteins, silencing the expression of TJ proteins with antisense oligonucleotides and siRNAs as well as the use of toxins and proteins derived from microorganisms that target TJ proteins.  相似文献   
136.
Tight junctions are commonly disrupted in cancer cells, including gastric cancer. Various growth factors have been reported to affect the localization of tight junction-associated proteins such as ZO-1 and occludin. We investigated the effect of epidermal growth factor (EGF), a growth factor that is often overexpressed in gastric cancer, and fetal bovine serum (FBS) on the localization of ZO-1 and occludin in a gastric cancer cell line. In the poorly differentiated gastric cancer cell line TMK-1, immunohistochemistry demonstrated that ZO-1 and occludin were predominantly localized to the cytoplasm, although there was some weak expression at the cell-cell contact. When the medium was replaced with fresh medium containing 10% FBS, ZO-1 and occludin were rapidly translocated from the cytosol to the cell-cell contact. A similar effect was seen in EGF exposure. These effects induced by FBS or EGF were attenuated in the presence of protein kinase C (PKC) inhibitors calphostin C and bisindolylmaleimide I, but not another PKC inhibitor G?6976, PD98059 (MAPK inhibitor), LY294002 (PI3 kinase inhibitor) or KT5720 (protein kinase A inhibitor). These results suggest that serum-derived factors, including EGF, can rapidly alter the localization of ZO-1 and occludin via a protein kinase C signaling pathway in TMK-1 gastric cancer cells.  相似文献   
137.
Haematogenous spread is a key step in the development of Acanthamoeba granulomatous encephalitis, however it is not clear how circulating amoebae cross the blood–brain barrier to enter the CNS to produce disease. Using the primary human brain microvascular endothelial cells (HBMEC), which constitute the blood–brain barrier, here it is shown that Acanthamoeba abolishes the HBMEC transendothelial electrical resistance. Using traversal assays, it was observed that Acanthamoeba crosses the HBMEC monolayers. The primary interactions of Acanthamoeba with the HBMEC resulted in increased protein tyrosine phosphorylations and the activation of RhoA, suggesting host–parasite cross-talk. Furthermore, Western blot assays revealed that Acanthamoeba degraded occludin and zonula occludens-1 proteins in a Rho kinase-dependent manner. Overall, these findings suggest that Acanthamoeba affects the integrity of the monolayer and traverses the HBMEC by targeting the tight junction proteins.  相似文献   
138.
《Phytomedicine》2014,21(2):184-194
Phenolic acids, the main active ingredients in Flos Lonicerae extract possess strong antibacterial, antioxidant and antiviral effects, and their contents was higher largely than that of other ingredients such as flavones, but the absolute bioavailability orally was significantly low, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of COS on the intestinal absorption of phenolic acids. The pharmacological effects such as antiviral activity improvement by COS were verified by MDCK cell damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of phenolic acids in Flos Lonicerae extract could be improved by COS. Meanwhile, COS at the same low, medium and high concentrations caused a significant, concentration-dependent increase in the Papp-value for phenolic acids compared to the control group (p < 0.05), and was all safe for the Caco-2 cells. The observations from single-pass intestinal perfusion in situ model showed that the intestinal absorption of phenolic acids can be enhanced by COS. Meanwhile, the absorption enhancing effect of phenolic acids might be saturable in different intestine sites. In pharmacokinetics study, COS at dosage of 25 mg/kg improved the bioavailability of phenolic acids in Flos Lonicerae extract to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with Flos Lonicerae extract with COS at dosage of 25 mg/kg prevented MDCK cell damage upon influenza virus propagation better than that of control. All findings above suggested that COS at dosage of 25 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of phenolic acids and the antiviral activity in vitro in Flos Lonicerae extract.  相似文献   
139.
Summary Electron microscopy reveals that sarcolemmata of adjacent muscle cells form pentalaminar junctions by fusion of apposed trilaminar double leaflet membranes. These junctions appear to be candidates for low resistance pathways between muscle fibers. The muscles depolarize slowly when bathed in solutions containing elevated concentrations of KCl, and the sucrose gap method can then be used to measure the potential difference between polarized and depolarized regions. Thus the junctions which we have observed may provide the structural basis for electrical transmission through the sucrose gap.Contribution No. 916 from the Bermuda Biological Station for Research, Inc. Supported by N.S.F. Grant POM 7613459 to the Bermuda Biological Station  相似文献   
140.
Summary With the conventional freeze-fracture technique applied to biological specimens, cell membranes split along an interior plane and two membrane faces are produced. True membrane surfaces remain hidden and can only be uncovered by deep-etching. To date, deep-etching could not be satisfactorily performed in the presence of cryoprotective agents since conventional cryoprotectants do not sublime due to their low vapour pressure. This lack of suitable volatile cryoprotectants has limited deep-etching so far to very small objects which can be cryofixed without cryoprotectants. As a consequence, our freeze-fracture knowledge of cell surfaces is still poor.The present study shows that ethanol is a suitable volatile cryoprotectant for the freeze-fracture technique, and provides a novel approach to the routine deep-etching of freeze-fracture specimens without the need for special equipment. With ethanol deep-etching, true outer cell-surfaces are demonstrated within the kidneys of rat and Psammomys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号