首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   21篇
  2013年   25篇
  2012年   10篇
  2011年   26篇
  2010年   23篇
  2009年   11篇
  2008年   9篇
  2007年   17篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   10篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   7篇
  1978年   1篇
排序方式: 共有252条查询结果,搜索用时 187 毫秒
61.
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys155 and Cys178, are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.  相似文献   
62.
The assembly of the β-barrel proteins present in the outer membrane (OM) of Gram-negative bacteria is poorly characterized. After translocation across the inner membrane, unfolded β-barrel proteins are escorted across the periplasm by chaperones that reside within this compartment. Two partially redundant chaperones, SurA and Skp, are considered to transport the bulk mass of β-barrel proteins. We found that the periplasmic disulfide isomerase DsbC cooperates with SurA and the thiol oxidase DsbA in the folding of the essential β-barrel protein LptD. LptD inserts lipopolysaccharides in the OM. It is also the only β-barrel protein with more than two cysteine residues. We found that surAdsbC mutants, but not skpdsbC mutants, exhibit a synthetic phenotype. They have a decreased OM integrity, which is due to the lack of the isomerase activity of DsbC. We also isolated DsbC in a mixed disulfide complex with LptD. As such, LptD is identified as the first substrate of DsbC that is localized in the OM. Thus, electrons flowing from the cytoplasmic thioredoxin system maintain the integrity of the OM by assisting the folding of one of the most important β-barrel proteins.  相似文献   
63.
Cysteine synthesis in bacteria and plants is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol)-lyase (OAS-TL), which form the hetero-oligomeric cysteine synthase complex (CSC). In plants, but not in bacteria, the CSC is assumed to control cellular sulfur homeostasis by reversible association of the subunits. Application of size exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry revealed a hexameric structure of mitochondrial SAT from Arabidopsis thaliana (AtSATm) and a 2:1 ratio of the OAS-TL dimer to the SAT hexamer in the CSC. Comparable results were obtained for the composition of the cytosolic SAT from A. thaliana (AtSATc) and the cytosolic SAT from Glycine max (Glyma16g03080, GmSATc) and their corresponding CSCs. The hexameric SAT structure is also supported by the calculated binding energies between SAT trimers. The interaction sites of dimers of AtSATm trimers are identified using peptide arrays. A negative Gibbs free energy (ΔG = −33 kcal mol−1) explains the spontaneous formation of the AtCSCs, whereas the measured SAT:OAS-TL affinity (KD = 30 nm) is 10 times weaker than that of bacterial CSCs. Free SAT from bacteria is >100-fold more sensitive to feedback inhibition by cysteine than AtSATm/c. The sensitivity of plant SATs to cysteine is further decreased by CSC formation, whereas the feedback inhibition of bacterial SAT by cysteine is not affected by CSC formation. The data demonstrate highly similar quaternary structures of the CSCs from bacteria and plants but emphasize differences with respect to the affinity of CSC formation (KD) and the regulation of cysteine sensitivity of SAT within the CSC.  相似文献   
64.
CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer, and a covalent dimer linked through the domain 2 cysteines. The disulfide-linked dimer is the preferred immune co-receptor. The form of CD4 that is preferred by HIV was examined in this study. HIV entry and envelope-mediated cell-cell fusion were tested using cells expressing comparable levels of wild-type or disulfide bond mutant CD4 in which the domain 2 cysteines were mutated to alanine. Eliminating the domain 2 disulfide bond increased entry of HIV reporter viruses and enhanced HIV envelope-mediated cell-cell fusion 2-4-fold. These observations suggest that HIV enters susceptible cells preferably through monomeric reduced CD4, whereas dimeric CD4 is the preferred receptor for binding to antigen-presenting cells. Cleavage of the domain 2 disulfide bond is possibly involved in the conformational change in CD4 associated with fusion of the HIV and cell membranes.  相似文献   
65.
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione Eh′. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular Eh′. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.  相似文献   
66.
Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, representing a new type of post-translational modification formerly undocumented. The level of these proteins is increased by oxidative stress. We attribute the accumulation of such proteins to the selective inactivation of GspSA amidase activity. X-ray crystallography and a chemical modification study indicated that the catalytic cysteine thiol of the GspSA amidase domain is transiently inactivated by H2O2 oxidation to sulfenic acid, which is stabilized by a very short hydrogen bond with a water molecule. We propose a set of reactions that explains how the levels of Gsp and Gsp S-thiolated proteins are modulated in response to oxidative stress. The hypersensitivities of GspSA and GspSA/glutaredoxin null mutants to H2O2 support the idea that GspSA and glutaredoxin act synergistically to regulate the redox environment of E. coli.  相似文献   
67.
The antioxidant and prooxidant effects of tannic, ellagic and gallic acids (1-60 microM) in the presence of hydrogen peroxide (40 and 100 microM) or copper ions (50 microM) on B14 Chinese hamster cells were examined. The fluorescence probe DCFH-DA (dichlorofluorescein-diacetate) was used to analyse the levels of reactive oxygen species. This method showed the reduction in oxidation of DCF (dichlorofluorescein). It indicates that antioxidant capacity of tested polyhenols is decreased in the presence of hydrogen peroxide or copper ions. Spectrophotometric assay with Ellman's reagent was used to determine SH-groups. The experimental results revealed the oxidative modification of proteins after exposure to polyphenols at concentrations above 15 microM. Additional incubation with H2O2 or Cu(2+) ions showed the prooxidant activity of tested complexes also for polyphenols used at a concentration of 1 microM. Fluorescence method with Hoechst 33258/propidium iodide dyes was used to study apoptotic and necrotic cell death. The obtained data demonstrated that polyphenols alone, as well as in the presence of hydrogen peroxide or copper ions, can induce DNA fragmentation.  相似文献   
68.
Protein tyrosine phosphatases (PTPases) contain an active site cysteine which when oxidized leads to loss of phosphatase activity and accumulation of phosphoproteins. For example, oxidants produced following EGF stimulation inhibit PTP1B and enhance EGF receptor phosphorylation. Because NO-derived species also modify reactive thiols, we postulated that NO would reversibly inhibit PTP1B. In our studies we exposed A431 or Jurkat cells to NO donors and measured PTP1B activity or used 3-maleimidylpropionylbiocytin (MPB) to measure thiol redox status. Nitrosothiols led to a rapid inhibition of PTP1B through a mechanism that was greatly enhanced by addition of cysteine to the medium. Analysis of thiol oxidation status using immunoprecipitated PTP1B showed modification consistent with loss of activity. Both enzyme inhibition and modification were reversible in intact cells or after addition of DTT to cell lysates. While DTT reversed oxidation, ascorbate did not, suggesting that formation of a mixed disulfide (possibly glutathionylation) rather than S-nitrosylation accounts for PTP1B inhibition. Importantly, PTP1B inhibition by nitrosothiols led to EGF receptor phosphorylation even in the absence of exogenously added EGF. These findings suggest an important role for NO in modulating signaling pathways since inhibition of PTPases could potentially enhance or prolong activity of phosphoproteins.  相似文献   
69.
70.
β-Glucoside transport by phosphoenolpyruvate-hexose phosphotransferase system in Escherichia coli is inactivated in vivo by thiol reagents. This inactivation is strongly enhanced by the presence of transported substrates. In a system reconstituted from soluble and membrane-bound components, only the particulate component, the membrane-bound enzyme IIbgl appeared as the target of N-ethylmaleimide inactivation. The same feature was found in the case of methyl-α-d-glucoside uptake via enzyme IIglc.It is shown that the sensitizing effect of substrates is specific and not generalized, methyl-α-d-glucoside only sensitizes enzyme IIbglc and p-nitrophenyl-β-d-glucoside only sensitizes enzyme IIbgl towards N-ethylmaleimide inactivation.The inactivation of enzyme IIbgl by thiol reagents is also promoted in vivo by fluoride inhibition of phosphoenolpyruvate synthesis. In toluene-treated bacteria, the presence of phosphoenolpyruvate protects against inactivation by thiol reagents of p-nitrophenyl-β-d-glucoside phosphorylation. Both results suggest that the inactivator resistent form of enzyme IIbgl is an energized form of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号