首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   43篇
  国内免费   32篇
  2023年   6篇
  2022年   17篇
  2021年   10篇
  2020年   19篇
  2019年   17篇
  2018年   10篇
  2017年   18篇
  2016年   22篇
  2015年   12篇
  2014年   22篇
  2013年   40篇
  2012年   22篇
  2011年   48篇
  2010年   20篇
  2009年   37篇
  2008年   43篇
  2007年   30篇
  2006年   24篇
  2005年   23篇
  2004年   11篇
  2003年   20篇
  2002年   6篇
  2001年   5篇
  2000年   9篇
  1999年   12篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有626条查询结果,搜索用时 15 毫秒
21.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   
22.
23.
Successful human norovirus (HuNoV) cultivation in stem cell-derived human intestinal enteroids (HIE) was recently reported. The purpose of this study was to evaluate the anti-HuNoV efficacy of two alcohol-based commercial hand sanitizers and 60% ethanol by suspension assay using RNase-RT-qPCR, with subsequent validation of efficacy by HuNoV cultivation using the HIE model. In suspension, when evaluated by RNase-RT-qPCR, 60% ethanol resulted in less than one log10 reduction in HuNoV genome equivalent copies (GEC) regardless of contact time (30 or 60s) or soil load. The two commercial products outperformed 60% ethanol regardless of contact time or soil load, providing 2·2–3·2 log10 HuNoV GEC reductions by suspension assay. Product B could not be validated in the HIE model due to cytotoxicity. Following a 60s exposure, viral replication in the HIE model increased 1·9 ± 0·2 log10 HuNoV GEC for the neutralization (positive) control and increased 0·9 ± 0·2 log10 HuNoV GEC in challenged HIE after treatment with 60% ethanol. No HuNoV replication in HIE was observed after a 60 s exposure to Product A.  相似文献   
24.
The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day?1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.  相似文献   
25.
UV light irradiation is being increasingly applied as a primary process for water disinfection, effectively used for inactivation of suspended (planktonic) cells. In this study, the use of UV irradiation was evaluated as a pretreatment strategy to control biofouling. The objective of this research was to elucidate the relative effectiveness of various targeted UV wavelengths and a polychromatic spectrum on bacterial inactivation and biofilm control. In a model system using Pseudomonas aeruginosa, the inactivation spectra corresponded to the DNA absorption spectra for all wavelengths between 220 and 280 nm, while wavelengths between 254 nm and 270 nm were the most effective for bacterial inactivation. Similar wavelengths of 254-260-270 nm were also more effective for biofilm control in most cases than targeted 239 and 280 nm. In addition, the prevention of biofilm formation by P. aeruginosa with a full polychromatic lamp was UV dose-dependent. It appears that biofilm control is improved when larger UV doses are given, while higher levels of inactivation are obtained when using a full polychromatic MP lamp. However, no significant differences were found between biofilms produced by bacteria that survived UV irradiation and biofilms produced by control bacteria at the same microbial counts. Moreover, the experiments showed that biofilm prevention depends on the post-treatment incubation time and nutrient availability, in addition to targeted wavelengths, UV spectrum and UV dose.  相似文献   
26.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p?>?0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p?<?0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p?<?0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1?–?0.5%) and exposure period were noted (p?<?0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p?>?0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   
27.
Exposing Pseudomonas aeruginosa biofilm grown on the inner surface of Teflon and silicone tubes to UVC light (265 nm) from light emitting diodes (LED) has previously been shown to substantially reduce biofilm growth. Smaller UVC fluencies were required to disinfect Teflon tubes compared to silicone tubes. Light propagation enhancement in tubes can be obtained if the refractive index of the intra-luminal saline solution is higher than that of the polymer. This condition is achieved by using Teflon tubes with a low refractive index (1.34) instead of the polymers with a high refractive index (1.40–1.50) normally used for tubing in catheter production. Determining whether or not UVC light exposure can disinfect and maintain the intra-luminal number of colony forming units (CFUs) at an exceedingly low level and thus avoid the growth and establishment of biofilm is of interest. The use of UVC diodes is demonstrated to be a preventative disinfection treatment on tubes made of Teflon, which enhances the UVC light propagation, and on tubes made of a softer material, ethylene vinyl acetate (EVA), which is suitable for catheters but much less suitable for UVC light propagation. Simulating an aseptic breach (~103–104 CFU ml?1), the UVC disinfection set-up was demonstrated using tubes contaminated with planktonic P. aeruginosa. After the tubes (10–20 cm) were inoculated with the bacterial solution for 3 h, they were emptied and filled with saline solutions (0.9–20%). Next UVC fluencies (0–21 mJ cm?2) were applied to the tubes 3 h after inoculation. Colony counts were carried out on liquid samples drawn from the tubes the first day after UVC treatment and liquid and surface samples were collected and analyzed 3–4 days later. A fluence of approximately 1.0 mJ cm?2 was noted as being sufficient for no growth for a period of 3–4 days for the Teflon tubes. Determining the fluence threshold for the EVA tubes was not possible. Almost all of the UVC-treated EVA tubes were disinfected simply by filling the tubes with a saline solution. Direct UVC treatment of the contaminated EVA tubes revealed, however, that a fluence of 21 mJ cm?2 killed the bacteria present in the tubes and kept them disinfected for a period of 3–4 days.  相似文献   
28.
Abstract

The prevention of infectious diseases is a global challenge where multidrug-resistant bacteria or “superbugs” pose a serious threat to worldwide public health. Microtopographic surfaces have attracted much attention as they represent a biomimetic and nontoxic surface antibacterial strategy to replace biocides. The antimicrobial effect of such natural and biomimetic surface nanostructures involves a physical approach which eradicates bacteria via the structural features of the surfaces without any release of biocides or chemicals. These recent developments present a significant proof-of-concept and a powerful tool in which cellular adhesion and death caused by a physical approach, can be controlled by the micro/nanotopology of such surfaces. This represents an innovative direction of development of clean, effective and nonresistant antimicrobial surfaces. The minireview will cover novel approaches for the construction of nanostructures on surfaces in order to create antimicrobial surface in an environmentally friendly, nontoxic manner.  相似文献   
29.
After introducing thermophilic anaerobic digestion (AD), characteristics of thermophilic methanogens are provided. Accordingly, (a) site of occurrence, (b) morphological characteristics (shape and motility), (c) biochemical characteristics (Gram character and % G+C profile), (d) nutritional characteristics (NaCl requirement and substrate specificity), and (e) growth characteristics (pH and temperature) of thermophilic methanogens are described. Some studies of the thermophilic AD are cited with their operational management problems. Subsequently, strategies to maximize net energy production are given, including mode of heating the bioreactors, role of agitation to promote AD performance and mode/intensity of mixing. Finally, advantages as well as drawbacks of AD under thermophilic conditions are given, concluding with its applications.  相似文献   
30.
Proper disposal of waste from poultry industries may be done by thermophilic anaerobic digestion. Particularly, thermophilic fermentation exhibits pivotal advantages. However, not only the accrued waste material (digestate) serves as organic fertilizer but also poses environmental problems when the pollutant release is poorly synchronized with the environmental demand. To minimize environmental risks, additional hyperthermophilic (moderately hyperthermophilic) treatment of animal by‐products is necessary, but concurrent release of pollutants is notably increased. To estimate the quantity and quality of pollutants released, we analyzed various organic compounds as well as 21 metals and tested their genotoxic/mutagenic potential by using the Allium cepa assay and the Ames test. As, Cd, Ni, and W were not detected or had low concentration (0.01–0.47 mg/kg) and were considered of little relevance. Co, Cr, Ni, Pb, and Mo were detected at concentrations up to 5.76 mg/kg. Fe, Mn, Zn, and Cu had the highest concentrations and were accumulated to inhibitory levels. Phenolic compounds were detected in negligible concentrations. We found that approximately 30% of onion root chromosomes were permanently damaged by high heavy metal concentrations released from the digestates. Higher temperatures and longer fermentation times fostered an increased release of pollutants above permissible limits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号