首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
  国内免费   7篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   8篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有57条查询结果,搜索用时 109 毫秒
21.
A strain of Thermomyces lanuginosus, isolated from hot spring water in Turkey, was studied for optimization of phytase production using solid-state fermentation. Effects on fermentation of different production parameters such as substrate type, moisture, culture time, and inoculum size were investigated using a one-factor-at-a-time approach. Central composite design (CCD) of response surface methodology was applied for the optimization of four factors (culture temperature, initial pH, aeration area, age of seeding culture) that were affecting phytase production by Thermomyces lanuginosus in rice bran. Maximum phytase activity was achieved by using rice bran. The optimum levels of variables that supported maximum enzyme activity were moisture 70%, culture time 7 days, inoculum size 40%, culture temperature 55°C, initial pH 7.5, aeration area 30%, age of seeding culture 5 days, sucrose 1%, and ZnSO4 2.5 mM. An overall 10.83-fold enhancement in phytase activity (0.30 to 3.248 U) was attained due to the optimization.  相似文献   
22.
Thermomyces lanuginosus and Scytalidium thermophilum are among the most ubiquitous thermophilic fungi in compost and soil. Chemical study on these two prevalent strains collected from Yunnan led to isolation of 23 metabolites, including one new metabolite, therlanubutanolide, and 15 known compounds, isolated from the YGP culture broth of Thermomyces lanuginosus and 7 known compounds isolated from Scytalidium thermophilum, respectively. Therlanubutanolide shared the quite similar features of the same carbon skeleton and saturation as natural hexadecanoic acids. This was the first reported discovery of such a lactone as natural occurring metabolite. All the compounds were reported for the first time from thermophilic fungi. Among them, N‐[(2S,3R,4E,8E)‐1,3‐dihydroxy‐9‐methyloctadeca‐4,8‐dien‐2‐yl]acetamide was for the first time reported to be a naturally occurring metabolite and its NMR data was first provided in this study. A type of PKS‐derived metabolites, three 3,4‐dihydronaphthalen‐1(2H)‐ones, which were widely found in plant pathogenic fungi as phytotoxins and reported to have antimicrobial activity, were obtained from both dominant thermophilic fungi. The frequent occurrence of such PKS phytotoxins in these two thermophilic fungi might suggest particular ecological interest.  相似文献   
23.
In an attempt to understand ribosome-induced GTP hydrolysis on eEF2, we determined a 12.6-Å cryo-electron microscopy reconstruction of the eEF2-bound 80S ribosome in the presence of aluminum tetrafluoride and GDP, with aluminum tetrafluoride mimicking the γ-phosphate during hydrolysis. This is the first visualization of a structure representing a transition-state complex on the ribosome. Tight interactions are observed between the factor's G domain and the large ribosomal subunit, as well as between domain IV and an intersubunit bridge. In contrast, some of the domains of eEF2 implicated in small subunit binding display a large degree of flexibility. Furthermore, we find support for a transition-state model conformation of the switch I region in this complex where the reoriented switch I region interacts with a conserved rRNA region of the 40S subunit formed by loops of the 18S RNA helices 8 and 14. This complex is structurally distinct from the eEF2-bound 80S ribosome complexes previously reported, and analysis of this map sheds light on the GTPase-coupled translocation mechanism.  相似文献   
24.
嗜热真菌ThermomyceslanuginosusA_236在液体培养基中50℃下静止培养14天,粗提酶液经硫酸铵分级沉淀、DEAE-Toyopearl离子交换层析、Butyl-Toyopearl疏水层析、SephacrylS100凝胶过滤和FPLCMonoQ离子交换层析,得到了凝胶电泳均质的葡萄糖淀粉酶。酶促反应产物经TLC分析为葡萄糖,证明纯化的酶为葡萄糖淀粉酶(EC3.2.1.3)。SDS-PAGE测定其分子量为72,000,不具亚基,PI为4.0,富含Val和Leu。酶反应最适温度和pH分别为70℃和5.0。在pH5.0条件下,酶在60℃保温1h,仍具有原酶活性。酶活性在70℃和80℃的半衰期分别为20min和6min。Ca2+对酶有激活作用,Fe3+、Al3+、Hg2+等金属离子对酶活力有一定的抑制作用。纯酶碳水化合物含量为12.4%。纯酶可水解可溶性淀粉、直链淀粉、支链淀粉、糊精、糖原、麦芽三糖和麦芽糖,其中可溶性淀粉为最适底物。  相似文献   
25.
Triglyceride lipase from Thermomyces lanuginosa (TlL) binds to the non-substrate small (40 nm) unilamelar vesicles of 1,2-dimiristoylglycero-sn-3-phosphoglycerol (DMPG-SUVs) in a catalytically active structure, whereas it adopts a catalytically incompetent form in binding to zwitterionic 1,2-dimiristoylglycero-sn-3-phosphocholine (DMPC-SUVs) or to large (100 nm) unilamelar DMPG (DMPG-LUVs) vesicles. Steady-state anisotropy measurements with probes that localize at different positions in the membrane give information on the effects of TlL (and its mutants) on the mobility of the phospholipids. All TlL mutants insert into the DMPG-SUVs and increase lipid order at the headgroup region and at the hydrophobic core of the lipid bilayer as well. The increase of the rigidity of the membrane that occurs in the gel and liquid crystal states, results in an increase of the phase transition temperature (Tm). Kinetic experiments with monolayers of 1,2-dicaprin demonstrate the thermal stability of the enzyme in the range of temperatures of the phase transition. Mutations in the tryptophan (Trp) residues of TlL reduce activity of this enzyme and affect its interaction with the membrane. The membrane insertions of TlL mutants with other than Trp substitutions are much more shallower and produce only small increases of Tm, whereas mutation of lid-located Trp89 or mutation of any other Trp residue (117, 221, 260) result in a deeper penetration and significant increases of the Tm. Lipid dynamics of DMPC-SUVs or DMPG-LUVs are not affected by any of the TlL mutants, despite their strong binding to the lipids revealed by resonance energy transfer (RET). These results are consistent with the lipase–lipid penetration model in which the “lid” region of TlL inserts into the highly curved anionic interface, thus stabilizing the “open” or active enzyme conformation, whereas TlL binds to the surface of zwitterionic and large (small curvature) anionic vesicles in a “closed” (or inactive) conformation, without insertion of the lid.  相似文献   
26.
嗜热真菌耐热木聚糖酶的产酶条件和酶谱分析*   总被引:13,自引:0,他引:13  
嗜热真菌Thermomyces lanuginosus CBS288.54-M18耐热木聚糖酶的产酶条件和酶谱分析结果表明:玉米芯水不溶木聚糖相对于其它来源木聚糖为最佳碳源,而酵母提取物和蛋白胨作为复合氮源时效果最好。培养基最适初始pH值为7.0,最适培养温度为50℃。在最适条件下发酵所产木聚糖酶活力最高达1.834u/mL。另外,SDS-PAGE和酶谱分析(变性和非变性状态下)结果都表明该菌只产生一种分子量约为26kD的G/11族木聚糖酶。  相似文献   
27.
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.Abbreviations FCCP carbonylcyanide p-trifluoromethylphenyl hydrazone - 2,4-DNP 2,4-dinitrophenol  相似文献   
28.
A thermophilic fungus Thermomyces lanuginous strain IISc 91, secreted one form each of α-amylase and glucoamylase during growth. Both enzymes were purified to homogeneity by ion-exchange and gel-filtration chromatography and obtained in mg quantities. α-Amylase was considered to be a dimeric protein of ∼ 42 kDa and contained 5% (by mass) carbohydrate. It was maximally active at pH 5.6 and at 65°C. It had an activation energy of 44 kJ mol-1. The apparent Km for soluble starch was 2.5 mg ml-1. The enzyme produced exceptionally high levels of maltose from raw potato starch. At 50°C, the enzyme was stable for > 7h. At 65°C, α-amylase was nearly 8-times more stable in the presence of calcium. Addition of calcium increaed the melting temperature of α-amylase from 66°C to 73°C. Upon incubation at 94°C, α-amylase was progressively and irreversibly inactivated, and converted into an inactive 72 kDa trimeric species. Glucoamylase was a monomeric glycoprotein of ∼ 45 kDa with a carbohydrate content of 11% (by mass). It effected up to 76% conversion of starch in 24 h producing glucose as the sole product. Its apparent Km for soluble starch was 0.04 mg ml-1 and Vmax was 660 Mmol glucose min-1 mg protein-1. It also hydrolyzed maltose. Its activity on maltooligosaccharides increased with the chain length of the substrates. Glucoamylase was stable at 60°C for over 7h. Its activation energy was 61 kJ mol-1 Glucoamylase did not show synergistic effect with α-amylase. The properties of α-amylase and glucoamylase of Thermomyces lanuginosus strain IISc 91 suggest their usefulness in the commercial production of maltose and glucose syrups.  相似文献   
29.
Methanol intolerance of lipase is a major limitation in lipase-catalysed methanolysis reactions. In this study, to understand the molecular mechanism of methanol-induced inactivation of lipases, we performed molecular dynamics (MD) simulations of Thermomyces lanuginosus lipase (TLL) in water and methanol and compared the observed structural and dynamic properties. The solvent accessibility analysis showed that in methanol, polar residues tended to be buried away from the solvent while non-polar residues tended to be more solvent-exposed in comparison to those in water. Moreover, we observed that in methanol, the van der Waals packing of the core residues in two hydrophobic regions of TLL became weak. Additionally, the catalytically relevant hydrogen bond between Asp201 OD2 and His258 ND1 in the active site was broken when enzyme was solvated in methanol. This may affect the stability of the tetrahedral intermediates in the catalytic cycle of TLL. Furthermore, compared to in water, some enzyme surface residues displayed enhanced movement in methanol with higher Cα root-mean-square atomic positional fluctuation values. One of such methanol-affecting surface residues (Ile241) was chosen for mutation, and MD simulation of the I241E mutant in methanol was conducted. The structural analysis of the mutant showed that replacing a non-polar surface residue with an acidic one at position 241 contributed to the stabilisation of enzyme structure in methanol. Ultimately, these results, while providing molecular-level insights into the destabilising effect of methanol on TLL, highlight the importance of surface residue redesign to improve the stability of lipases in methanol environments.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号