首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  国内免费   7篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
Alcohol dehydrogenase (E. C. 1.1.1.1) from Thermoanaerobium brockii at 25 degrees C and at 65 degrees C is more active with secondary than primary alcohols. The enzyme utilizes NADP and NADPH as cosubstrates better than NAD and NADH. The maximum velocities (V(m)) for secondary alcohols at 65 degrees C are 10 to 100 times higher than those at 25 degrees C, whereas the K(m) values are more comparable.At both 25 degrees C and 65 degrees C the substrate analogue 1,1,1,3,3,3-hexafluoro-2-propanol inhibited the oxidation of alcohol competitively with respect to cyclopentanol, and uncompetitively with respect to NADP. Dimethylsulfoxide inhibited the reduction of cyclopentanone competitively with respect to cyclopentanone, and uncompetitively with respect to NADPH. As a product inhibitor, NADP was competitive with respect to NADPH. These results demonstrate that the enzyme binds the nucleotide and then the alcohol or ketone to form a ternary complex which is converted to a product ternary complex that releases product and nucleotide in that order.At 25 degrees C, all aldehydes and ketones examined inhibited the enzyme at concentrations above their Michaelis constants. The substrate inhibition by cyclopentanone was incomplete, and it was uncompetitive with respect to NADPH. Furthermore, cyclopentanone as a product inhibitor showed intercept-linear, slope-parabolic inhibition with respect to cyclopentanol. These results indicate that cyclopentanone binds to the enzyme-NADP complex at high concentrations. The resulting ternary complex slowly dissociates NADP and cyclopentanone.At 65 degrees C, all of the secondary alcohols, with the exception of cyclohexanol, show substrate activation at high concentration. Experiments in which NADP was the variable substrate and cyclopentanol as the constant-variable substrate over a wide range of concentrations gave double reciprocal plots in which the intercepts showed substrate activation and the slopes showed substrate inhibition. These results indicate that the secondary alcohols bind to the enzyme-NADPH complex at high concentrations and that the resulting ternary complex dissociates NADPH faster than the enzyme-NADPH complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   
32.
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.  相似文献   
33.
The functional and structural significance of the C-terminal region of Thermoanaerobacter ethanolicus 39E amylopullulanase (TetApu) was explored using C-terminal truncation mutagenesis. Comparative studies between the engineered full-length (TetApuM955) and its truncated mutant (TetApuR855) included initial rate kinetics, fluorescence and CD spectrometric properties, substrate-binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, k (cat)/K (m), was slightly decreased for the truncated enzymes toward the soluble starch or pullulan substrate. Changes to the substrate affinity, K (m), and turnover rate, k (cat), varied in different directions for both types of substrates between TetApuM955 and TetApuR855. TetApuR855 exhibited a higher thermostability than TetApuM955, and retained similar substrate-binding ability and hydrolyzing efficiency against the raw starch substrate as TetApuM955 did. Fluorescence spectroscopy indicated that TetApuR855 retained an active folding conformation similar to TetApuM955. A CD-melting unfolding study was able to distinguish between TetApuM955 and TetApuR855 by the higher apparent transition temperature in TetApuR855. These results indicate that up to 100 amino acid residues, including most of the C-terminal fibronectin typeIII (FnIII) motif of TetApuM955, could be further removed without causing a seriously aberrant change in structure and a dramatic decrease in soluble starch and pullulan hydrolysis.  相似文献   
34.
Dihydrodipicolinate synthase (DHDPS) catalyses the first reaction of the (S)-lysine biosynthesis pathway in bacteria and plants. The hypothetical gene for dihydrodipicolinate synthase (dapA) of Thermoanaerobacter tengcongensis was found in a cluster containing several genes of the diaminopimelate lysine–synthesis pathway. The dapA gene was cloned in Escherichia coli, DHDPS was subsequently produced and purified to homogeneity. The T. tengcongensis DHDPS was found to be thermostable (T 0.5 = 3 h at 90°C). The specific condensation of pyruvate and (S)-aspartate-β -semialdehyde was catalyzed optimally at 80°C at pH 8.0. Enzyme kinetics were determined at 60°C, as close as possible to in vivo conditions. The established kinetic parameters were in the same range as for example E. coli dihydrodipicolinate synthase. The specific activity of the T. tengcongensis DHDPS was relatively high even at 30°C. Like most dihydrodipicolinate synthases known at present, the DHDPS of T. tengcongensis seems to be a tetramer. A structural model reveals that the active site is well conserved. The binding site of the allosteric inhibitor lysine appears not to be conserved, which agrees with the fact that the DHDPS of T. tengcongensis is not inhibited by lysine under physiological conditions.  相似文献   
35.
Energy-converting hydrogenases (Ech) are ancient, membrane-bound enzymes that use reduced ferredoxin (Fd) as an electron donor to reduce protons to molecular H2. Experiments with whole cells, membranes and vesicle-fractions suggest that proton reduction is coupled to proton translocation across the cytoplasmatic membrane, but this has never been demonstrated with a purified enzyme. To this end, we produced a His-tagged Ech complex in the thermophilic and anaerobic bacterium Thermoanaerobacter kivui. The enzyme could be purified by affinity chromatography from solubilized membranes with full retention of its eight subunits, as well as full retention of physiological activities, i.e., H2-dependent Fd reduction and Fd2--dependent H2 production. We found the purified enzyme contained 34.2 ± 12.2 mol of iron/mol of protein, in accordance with seven predicted [4Fe-4S]-clusters and one [Ni-Fe]-center. The pH and temperature optima were at 7 to 8 and 66 °C, respectively. Notably, we found that the enzymatic activity was inhibited by N,N′-dicyclohexylcarbodiimide, an agent known to bind ion-translocating glutamates or aspartates buried in the cytoplasmic membrane and thereby inhibiting ion transport. To demonstrate the function of the Ech complex in ion transport, we further established a procedure to incorporate the enzyme complex into liposomes in an active state. We show the enzyme did not require Na+ for activity and did not translocate 22Na+ into the proteoliposomal lumen. In contrast, Ech activity led to the generation of a pH gradient and membrane potential across the proteoliposomal membrane, demonstrating that the Ech complex of T. kivui is a H+-translocating, H+-reducing enzyme.  相似文献   
36.
尽管在腾冲嗜热厌氧菌的基因组注释中缺乏葡萄糖激酶(Glucokinase,GLK)(EC 2.7.1.2),但是该菌的蛋白质表达谱分析表明,TTE0090可能是一种新型的葡萄糖激酶。利用体外克隆表达的方法,表达了重组TTE0090;此蛋白质不仅具备使葡萄糖磷酸化的催化活性,同时在高温下也能参与反应。采用Western blot和阴离子交换层析的方法进一步检验了TTE0090在腾冲嗜热厌氧菌体内的蛋白质表达及其催化活性,发现体内TTE0090蛋白表达量随温度的升高而降低,而酶比活力却与生长温度呈正相关。这可能预示不同温度下腾冲嗜热厌氧菌中的糖酵解途径的催化通量是相对恒定的。实验数据均表明,TTE0090是存在于腾冲嗜热厌氧菌中的一种新型的葡萄糖激酶。TTE0090基因和其蛋白产物的研究工作,将进一步加深人们对嗜热菌的温度适应性以及它们的生存机理的了解。  相似文献   
37.
用PCR方法从嗜热厌氧乙醇杆菌(Thermoanaerobacter ethanolicus)JW200中扩增出编码a-葡萄糖苷酶的基因,将其克隆到大肠杆菌(Escherichia coli)表达载体pTrc99A上并获得表达a-葡萄糖苷酶的大肠杆菌重组菌。重组菌经IPTG诱导表达,SDS-PAGE检测出蛋白相对分子量约89kDa,经阴离子交换层析和凝胶层析纯化后的a-葡萄糖苷酶最适反应温度为70℃,最适反应pH为5~5.5,且在pH 5.5~6.5之间有较高的稳定性。重组a-葡萄糖苷酶在70℃下105 min后酶活仍达到80%。  相似文献   
38.
The transition metal cobalt, an essential cofactor for many enzymes in prokaryotes, is taken up by several specifi c transport systems. The CbiMNQO protein complex belongs to type-1 energy-coupling factor (ECF) transporters and is a widespread group of microbial cobalt transporters. CbiO is the ATPase subunit (A-component) of the cobalt transporting system in the gram-negative thermophilic bacterium Thermoanaerobacter tengcongensis. Here we report the crystal structure of a nucleotide-free CbiO at a resolution of 2.3 ?. CbiO contains an N-terminal canonical nucleotide-binding domain (NBD) and C-terminal helical domain. Structural and biochemical data show that CbiO forms a homodimer mediated by the NBD and the C-terminal domain. Interactions mainly via conserved hydrophobic amino acids between the two C-terminal domains result in formation of a four-helix bundle. Structural comparison with other ECF transporters suggests that non-conserved residues outside the T-component binding groove in the A component likely act as a specifi city determinant for T components. Together, our data provide information on understanding of the structural organization and interaction of the CbiMNQO system.  相似文献   
39.
Zhang J  Liu J  Zhou J  Ren Y  Dai X  Xiang H 《Biotechnology letters》2003,25(17):1463-1467
The lipA gene encoding a thermostable esterase was cloned from Thermoanaerobacter tengcongensis and overexpressed in Escherichia coli. The recombinant esterase, with a molecular mass of approx. 43 kDa determined by SDS-PAGE, was purified to homogeneity through Sephadex G-100 gel filtration. The purified enzyme actively hydrolyzed tributyrin but not olive oil. Maximum activity was observed on p-nitrophenyl (NP)-propionate (C3) and p-NP-butyrate (C4), with little activity towards p-NP-palmitate (C16). The esterase was optimally active at 70 °C (over 15 min) and at pH 9. It is highly thermostable, with a residual activity greater than 80% after incubation at 50 °C for more than 10 h. The activity was not inhibited by 5 mM EDTA and PMSF, indicating the esterase is not a metalloenzyme and may contain a specific structure around the catalytic serine residue. In addition, it was stable for 1 h at 37 °C in 1% CHAPS and Triton X-100 but not stable in 1% Tween 20 or SDS.  相似文献   
40.
The glucosyl transfer reaction of kojibiose phosphorylase (KPase) from Thermoanaerobacter brockii ATCC35047 was examined using cyclo-{-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->} (CTS) as an acceptor. KPase produced four transfer products, saccharides 1-4. The structure of a major product, saccharide 4, was 2-O-alpha-d-glucopyranosyl-CTS, cyclo-{-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-[alpha-d-Glcp-(1-->2)]-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->}. The other transfer products, saccharides 1-3, were 2-O-alpha-kojibiosyl-, 2-O-alpha-kojitriosyl-, and 2-O-alpha-kojitetraosyl-CTS, respectively. These results showed that KPase transferred a glucose residue to the C-2 position at the ring glucose residue of CTS. This enzyme also catalyzed the chain-extending reaction of the side chain of 2-O-alpha-d-glycopyranosyl-CTS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号