首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  国内免费   7篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
热休克蛋白60(HSP60)是细菌体内一种非常重要的分子伴侣,其可以协助蛋白质或肽链的正确折叠和构型,防止变性和降解。基于本实验室的早期观察,腾冲嗜热厌氧菌的HSP60是一个典型的温度相关蛋白质,在80℃的表达水平最高。为了进一步了解嗜热菌应急的分子机制,继续进行了在热激后HSP60基因表达的动态研究。将最适温度(75℃)下培养的腾冲嗜热厌氧菌迅速地转移至80℃继续培养,然后在不同的时间点上分别取样,并通过双向电泳、Western blot和Real_time PCR等方法,分析了HSP60在mRNA和蛋白质水平上的表达量的改变。试验结果表明,在80℃热处理4h内的短期应急过程中,HSP60蛋白水平一直呈上升趋势,而它的mRNA水平则表现为先升高后下降的一个非对称性的峰形变化。HSP60的mRNA和蛋白质的对温度的应答快慢程度是不同的。HSP60的mRNA水平的显著变化在1h内便可观察到,而蛋白质水平的显著改变要延迟3h左右。此外,HSP60的mRNA和蛋白质对温度的应答量变大小也是不同的。  相似文献   
12.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   
13.
为研究CRISPR/Cas系统及其相关蛋白Cas2(TTE2657)在腾冲嗜热厌氧杆菌热适应中的作用,应用PCR技术构建了原核重组质粒pET-28a::cas2,并在大肠埃希菌BL21表达Cas2蛋白;结合生物信息学软件对cas2编码蛋白的基本理化性质、氨基酸同源性、空间结构及蛋白质相互作用网络进行预测和分析。结果显示,成功构建了原核表达载体pET-28a::cas2并在大肠埃希菌BL21中得到表达,Cas2分子质量大小为9.9 ku,主要以可溶性形式存在;qRT-PCR显示cas2 mRNA在60℃和75℃高表达;生物信息学分析显示cas2基因其完整的ORF全长264 bp,编码88个氨基酸,其中Ile(14)、Ser(14)、Phe (12)含量较高,等电点为9.31,不存在跨膜结构。其蛋白质二级空间结构以α-螺旋、无规则卷曲、β-折叠为主,蛋白互作预测网络显示Cas2与Cas3、Cas5、Cas7等其家族大部分蛋白存在相互作用。进化树分析显示腾冲嗜热厌氧杆菌cas2基因与厌氧菌芽胞杆菌B7M1同源性最高(39.5%)。腾冲嗜热厌氧杆菌cas2编码蛋白是一种亲水性蛋白,在原核系统能高效表达。本研究为嗜热蛋白质的热稳定性机制的研究提供参考。  相似文献   
14.
The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland. The cells were rod-shaped, motile, and had terminal spores; cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transmission electron microscopy. Strain A3 used a number of carbohydrates as carbon sources, including xylan, but did not utilize microcrystalline cellulose. Fermentation end products were ethanol, acetate, lactate, CO2, and H2. The temperature optimum for growth was between 70 and 75° C, and growth occurred in the range of 50–75° C. The pH range for growth was 4.7–8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G, neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates that strain A3 belongs to the eubacteria. Addition of 50.66 kPa H2 or 2% NaCl did not affect growth. The isolate grew in the presence of exogenously added 4% (w/v) ethanol. The G+C ratio was 37 mol%. 16S rDNA studies revealed that strain A3 belongs to the genus Thermoanaerobacter. Genotypic and phenotypic differences between strain A3 and other related species indicate that strain A3 can be assigned to a new species, and the name Thermoanaerobacter mathranii is proposed. Received: 7 October 1996 / Accepted: 14 March 1997  相似文献   
15.
The active-site metal ion and the associated ligand amino acids in the NADP-linked, tetrameric enzyme Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized by atomic absorption spectroscopy analysis and site-directed mutagenesis. Our preliminary results indicating the presence of a catalytic zinc and the absence of a structural metal ion in TBADH (Peretz & Burstein. 1989. Biochemistry 28:6549-6555) were verified. To determine the role of the putative active-site zinc, we investigated whether exchanging the zinc for other metal ions would affect the structural and/or the enzymatic properties of the enzyme. Substituting various metal ions for zinc either enhanced or diminished enzymatic activity, as follows: Mn2+ (240%); Co2+ (130%); Cd2+ (20%); Cu2+ or V3+ (< 5%). Site-directed mutagenesis to replace any one of the three putative zinc ligands of TBADH, Cys 37, His 59, or Asp 150, with the non-chelating residue, alanine, abolished not only the metal-binding capacity of the enzyme but also its catalytic activity, without affecting the overall secondary structure of the enzyme. Replacing the three putative catalytic zinc ligands of TBADH with the respective chelating residues serine, glutamine, or cysteine damaged the zinc-binding capacity of the mutated enzyme and resulted in a loss of catalytic activity that was partially restored by adding excess zinc to the reaction. The results imply that the zinc atom in TBADH is catalytic rather than structural and verify the involvement of Cys 37, His 59, and Asp 150 of TBADH in zinc coordination.  相似文献   
16.
A gene encoding the trehalose phosphorylase (TreP), which reversibly catalyzes trehalose degradation and synthesis from α-glucose-1-phosphate (α-Glc-1-P) and glucose, was cloned fromThermoanaerobacter tengcongensis and successfully expressed inEscherichia coli. The overexpressed TreP, with a molecular mass of approximately 90 kDa, was determined by SDS-PAGE. It catalyzes trehalose synthesis and degradation optimally at 70°C (for 30 min), with the optimum pHs at 6.0 and 7.0, respectively. It is highly thermostable, with a 77% residual activity after incubation at 50°C for 7 h. Under the optimum reaction conditions, 50 μg crude enzyme of the TreP is able to catalyze the synthesis of trehalose up to 11.6 mmol/L from 25 mmol/L α-Glc-1-P and 125 mmol/L glucose within 30 min, while only 1.5 mmol/L out of 250 mmol/L trehalose is degraded within the same time period. Dot blotting revealed that thetreP gene inT. tengcongensis was upregulated in response to salt stress but downregulated when trehalose was supplied. Both results indicate that the dominant function of theT. tengcongensis TreP is catalyzing trehalose synthesis but not degradation. Thus it might provide a novel route for industrial production of trehalose.  相似文献   
17.
18.
This study describes the development and application of a bioaffinity chromatographic system for the one-step purification of an NADP(+)-dependent secondary alcohol dehydrogenase from the obligate anaerobe, Thermoanaerobacter brockii (TBADH, EC 1.1.1.2). The general approach is based upon improving the selectivity of immobilized cofactor derivatives (general ligand approach to bioaffinity chromatography) through using soluble enzyme-specific substrate analogues in irrigants to promote biospecific adsorption (the kinetic locking-on tactic). Specifically, the following is described: Evaluation of 8'-azo-linked, C(8)-linked, N(1)-linked, and N(6)-linked immobilized NADP(+) derivatives for use with the kinetic locking-on strategy for bioaffinity purification of TBADH; evaluation of 2', 5'-ADP as a stripping ligand for TBADH bioaffinity purifications using an 8'-azo-linked immobilized NADP(+) derivative in the locking-on mode; and application of the developed bioaffinity chromatographic system to the purification of TBADH from a crude cellular extract. Surprizingly, of the four immobilized NADP(+) derivatives investigated, only the 8'-azo-linked immobilized NADP(+) derivative proved effective for TBADH affinity purification when used in conjunction with pyrazole (a competitive inhibitor of TBADH activity) as the locking-on ligand. This is in contrast to other NADP(+)-dependent dehydrogenases where the immobilized N(6)-linked cofactor proved to be suitable. While the one-step purification of TBADH to electrophoretic homogeneity is described in the present study (92% yield), results from the model chromatographic studies point to improvements that could be made to the immobilized cofactor derivative to improve its suitability for TBADH bioaffinity purification and to facilitate future large scale protein purification operations.  相似文献   
19.
Wall teichoic acid (WTA) polymers are covalently affixed to the Gram-positive bacterial cell wall and have important functions in cell elongation, cell morphology, biofilm formation, and β-lactam antibiotic resistance. The first committed step in WTA biosynthesis is catalyzed by the TagA glycosyltransferase (also called TarA), a peripheral membrane protein that produces the conserved linkage unit, which joins WTA to the cell wall peptidoglycan. TagA contains a conserved GT26 core domain followed by a C-terminal polypeptide tail that is important for catalysis and membrane binding. Here, we report the crystal structure of the Thermoanaerobacter italicus TagA enzyme bound to UDP-N-acetyl-d-mannosamine, revealing the molecular basis of substrate binding. Native MS experiments support the model that only monomeric TagA is enzymatically active and that it is stabilized by membrane binding. Molecular dynamics simulations and enzyme activity measurements indicate that the C-terminal polypeptide tail facilitates catalysis by encapsulating the UDP-N-acetyl-d-mannosamine substrate, presenting three highly conserved arginine residues to the active site that are important for catalysis (R214, R221, and R224). From these data, we present a mechanistic model of catalysis that ascribes functions for these residues. This work could facilitate the development of new antimicrobial compounds that disrupt WTA biosynthesis in pathogenic bacteria.  相似文献   
20.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号