首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   48篇
  国内免费   34篇
  1535篇
  2023年   2篇
  2022年   12篇
  2021年   12篇
  2020年   81篇
  2019年   23篇
  2018年   25篇
  2017年   56篇
  2016年   53篇
  2015年   41篇
  2014年   70篇
  2013年   89篇
  2012年   67篇
  2011年   93篇
  2010年   67篇
  2009年   118篇
  2008年   99篇
  2007年   82篇
  2006年   81篇
  2005年   49篇
  2004年   41篇
  2003年   44篇
  2002年   26篇
  2001年   18篇
  2000年   15篇
  1999年   27篇
  1998年   13篇
  1997年   6篇
  1996年   26篇
  1995年   15篇
  1994年   11篇
  1993年   20篇
  1992年   14篇
  1991年   13篇
  1990年   12篇
  1989年   16篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   10篇
  1982年   15篇
  1981年   7篇
  1980年   2篇
  1979年   9篇
  1978年   8篇
  1977年   2篇
  1976年   5篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1535条查询结果,搜索用时 0 毫秒
81.
Antifreeze proteins (AFPs) enable organisms to survive under freezing or sub-freezing conditions. AFPs have a great potential in the low temperature storage of cells, tissues, organs, and foods. This process will require a large number of recombinant AFPs. In the present study, the recombinant carrot AFP was highly expressed in Escherichia coli strain BL21 (DE3). The activity of the purified and refolded recombinant proteins was analyzed by measurement of thermal hysteresis (TH) activity and detection of in vitro antifreeze activity by measuring enhanced cold resistance of bacteria. Two carrot AFP mutants generated by site-directed mutagenesis were also expressed and purified under these conditions for use in parallel experiments. Recombinant DcAFP displayed a TH activity equivalent to that of native DcAFP, while mutants DcAFP-N130Q and rDcAFP-N130V showed 32 and 43% decreases in TH activity, respectively. Both the recombinant DcAFP and its mutants were able to enhance the cold resistance of bacteria, to degrees consistent with their respective TH activities.  相似文献   
82.
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have studied the biochemical diversity of several GH 12 homologs. The H. schweinitzii Cel12A enzyme differs from the T. reesei Cel12A enzyme by only 14 amino acids (93% sequence identity), but is much less thermally stable. The bacterial Cel12A enzyme from S. sp. 11AG8 shares only 28% sequence identity to the T. reesei enzyme, and is much more thermally stable. Each of the 14 sequence differences from H. schweinitzii Cel12A were introduced in T. reesei Cel12A to determine the effect of these amino acid substitutions on enzyme stability. Several of the T. reesei Cel12A variants were found to have increased stability, and the differences in apparent midpoint of thermal denaturation (T(m)) ranged from a 2.5 degrees C increase to a 4.0 degrees C decrease. The least stable recruitment from H. schweinitzii Cel12A was A35S. Consequently, the A35V substitution was recruited from the more stable S. sp. 11AG8 Cel12A and this T. reesei Cel12A variant was found to have a T(m) 7.7 degrees C higher than wild type. Thus, the buried residue at position 35 was shown to be of critical importance for thermal stability in this structural family. There was a ninefold range in the specific activities of the Cel12 homologs on o-NPC. The most and least stable T. reesei Cel12A variants, A35V and A35S, respectively, were fully active. Because of their thermal tolerance, S. sp. 11AG8 Cel12A and T. reesei Cel12A variant A35V showed a continual increase in activity over the temperature range of 25 degrees C to 60 degrees C, whereas the less stable enzymes T. reesei Cel12A wild type and the destabilized A35S variant, and H. schweinitzii Cel12A showed a decrease in activity at the highest temperatures. The crystal structures of the H. schweinitzii, S. sp. 11AG8, and T. reesei A35V Cel12A enzymes have been determined and compared with the wild-type T. reesei Cel12A enzyme. All of the structures have similar Calpha traces, but provide detailed insight into the nature of the stability differences. These results are an example of the power of homolog recruitment as a method for identifying residues important for stability.  相似文献   
83.
Lens alpha-crystallin, alpha A- and alpha B-crystallin, and Hsp27 are members of the small heat shock protein family. Both alpha A- and alpha B-crystallin are expressed in the lens and serve as structural proteins and as chaperones, but alpha B-crystallin is also expressed in nonlenticular organs where Hsp27, rather than alpha A-crystallin, is expressed along with alpha B-crystallin. It is not known what additional function Hsp27 has besides as a heat shock protein, but it may serve, as alpha A-crystallin does in the lens, to stabilize alpha B-crystallin. In this study, we investigate aspects on conformation and thermal stability for the mixture of Hsp27 and alpha B-crystallin. Size exclusion chromatography, circular dichroism (CD), and light scattering measurements indicated that Hsp27 prevented alpha B-crystallin from heat-induced structural changes and high molecular weight (HMW) aggregation. The results indicate that Hsp27 indeed promotes stability of alpha B-crystallin.  相似文献   
84.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics.  相似文献   
85.
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one.  相似文献   
86.
87.
The correlation between the mechanical property and the thermotropic transition of the phospholipid bilayer has been recently demonstrated (Chem. Phys. Lipids 110 (2001) 27). However, the role of thermal induced mechanical responses of phospholipid bilayer on the contact mechanics of liposome adhering on a cationic substrate has not been determined. In this study, confocal-reflectance interference contrast microscopy, phase contrast microscopy and contact mechanics modeling are applied to probe the adhesion mechanisms of liposomes in the presence of electrostatic interactions during the thermotropic transition of the lipid bilayer. When temperature increases from 23 to 49 °C at pH 7.4, the degree of liposome deformation (a/R) and adhesion energy of dipalmitoyl-sn-glycero-3-phosphocholine liposome increases by 10% and remains constant, respectively, on 3-amino-propyl-triethoxy-silane (APTES) modified substrate. The extents of increase in these two parameters are highly dependent on the physicochemical properties of the rigid substrate. At pH 4, the adhesion energies above and below the phase transition temperature (Tm) are increased by one order of magnitude due to the formation of the free silanol groups on APTES substrate. In hypotonic condition, the degree of vesicle deformation remains constant and the adhesion energy reduces by 20% during sample heating. Under all conditions, the adhesion energy of the adhering liposome spans a few orders of magnitude against the increase of liposome size as the surface area to volume ratio is maximized in smallest vesicle.  相似文献   
88.
A thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) was purified from the culture medium of Lenzites betulinus by ion exchange chromatography, gel filtration and isoelectric focusing chromatography. The MnP purified from L. betulinus (L-MnP) has a molecular mass of 40 kDa and its isoelectric point was determined to be 6.2. The first 19 amino acids at the N-terminal end of the L-MnP sequence were found to exhibit 74% identity with those of a Phlebia radiata MnP. L-MnP was proved to have the highest hydrogen peroxide tolerance among MnPs reported so far. It retained more than 60% of the initial activity after thermal treatment at 60°C for 60 min, and also retained more than 60% of the initial activity after exposure to 10 mM hydrogen peroxide for 5 min at 37°C.  相似文献   
89.
Pseudomonas aeruginosa azurin is a blue-copper protein with a beta-barrel fold. Here we report that, at conditions where thermal unfolding of apo-azurin is reversible, the reaction occurs in a single step with a transition midpoint (T(m)) of 69 degrees C (pH 7). The active-site mutation His117Gly creates a cavity in the beta-barrel near the surface but does not perturb the overall fold (T(m) of 64 degrees C, pH 7). Oxidation of the active-site cysteine (Cysteine-112) in wild-type azurin, which occurs readily at higher temperatures, results in a modified protein that cannot adopt a native-like structure. In sharp contrast, Cysteine-112 oxidation in His117Gly azurin yields a modified apo-azurin that appears folded and displays cooperative, reversible unfolding (T(m) approximately 55 degrees C, pH 7). We conclude that azurin's beta-barrel is a rigid structural element that constrains the structure of its surface; a bulky modification can only be accommodated if complementary space is provided.  相似文献   
90.
Clitocypin, a new type of cysteine proteinase inhibitor from the mushroom Clitocybe nebularis, is a 34-kDa homodimer lacking disulphide bonds, reported to have unusual stability properties. Sequence similarity is limited solely to certain proteins from mushrooms. Infrared spectroscopy shows that clitocypin is a high beta-structure protein which was lost at high temperatures. The far UV circular dichroism spectrum is not that of classical beta-structure, but similar to those of a group of small beta-strand proteins, with a peak at 189nm and a trough at 202nm. An aromatic peak at 232nm and infrared bands at 1633 and 1515cm(-1) associated with the peptide backbone and the tyrosine microenvironment, respectively, were used to characterize the thermal unfolding. The reversible transition has a midpoint at 67 degrees C, with DeltaG=34kJ/mol and DeltaH=300kJ/mol, and is, unusually, independent of protein concentration. The kinetics of thermal unfolding and refolding are slow, with activation energies of 167 and 44kJ/mol, respectively. A model for folding and assembly is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号