首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4583篇
  免费   308篇
  国内免费   392篇
  2023年   76篇
  2022年   78篇
  2021年   113篇
  2020年   193篇
  2019年   202篇
  2018年   163篇
  2017年   186篇
  2016年   165篇
  2015年   149篇
  2014年   221篇
  2013年   320篇
  2012年   192篇
  2011年   257篇
  2010年   183篇
  2009年   284篇
  2008年   247篇
  2007年   242篇
  2006年   246篇
  2005年   175篇
  2004年   150篇
  2003年   136篇
  2002年   119篇
  2001年   92篇
  2000年   100篇
  1999年   83篇
  1998年   72篇
  1997年   72篇
  1996年   67篇
  1995年   58篇
  1994年   44篇
  1993年   60篇
  1992年   58篇
  1991年   46篇
  1990年   45篇
  1989年   50篇
  1988年   31篇
  1987年   29篇
  1986年   31篇
  1985年   36篇
  1984年   32篇
  1983年   21篇
  1982年   38篇
  1981年   23篇
  1980年   14篇
  1979年   24篇
  1978年   17篇
  1977年   8篇
  1976年   9篇
  1975年   5篇
  1973年   5篇
排序方式: 共有5283条查询结果,搜索用时 203 毫秒
21.
22.
Summary Binding of azide to a series of copper(II) complexes has been investigated by absorption, CD and EPR spectroscopy. Axial binding of azide to Cu(II) can be differentiated from equatorial binding through the lower intensity and lack of optical activity of the LMCT band. The affinity of azide for Cu(II) increases with the overall positive charge of the complex. The preliminary data on thiocyanate binding to Cu(II) seem to agree with the trends observed for the corresponding azide adducts.  相似文献   
23.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   
24.
Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.  相似文献   
25.
Sesbania sesban was evaluated as green manure crop for lowland rice in the Dry Zone of Sri Lanka. The legume was grown during a fallow period before lowland rice (Oryza sativa) and ploughed under just before transplanting. Weight loss and nitrogen content in litterbags containing leaves, stems and roots of the legume were monitored. Comparisons were made between rice yields from 20 m2 plots after green manuring in combination with different nitrogen fertilizer levels (0, 2.4, 4.8 and 7.2 gm−2) and nitrogen fertilizer (9.6 gm−2) alone. Above-ground biomass ofS. sesban was 440 gm−2 (dry wt) when ploughed under after 84 days growth. N-content in leaves, stems and roots was 3.76%, 0.41% and 0.73%, respectively. This gave a N-input fromS. sesban of 9.2 gm−2 (8.3 g from above-ground parts and 0.9 g from roots). The corresponding K and P inputs were 7.3 and 0.6 gm−2 respectively. The nitrogen rich leaves, which contained 88% of the nitrogen in the above-ground parts, decomposed and released its nitrogen much more rapidly than the stems and roots. After only four days the leaves had released 5.3 g Nm−2 and after 14 days they had released 6.4 g Nm−2. The highest rice yield (505 gm−2) was obtained usingS. sesban and 4.8 gm−2 of N-fertilizer. The yields with only N-fertilizer or onlyS. sesban were 442 gm−2 and 396 gm−2, respectively. Due to the rapid decomposition of the nitrogen rich leaves,S. sesban did not behave as a slow release fertilizer. Thus, it is not necessary to apply nitrogen fertilizers as a basal dose.  相似文献   
26.
Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida>A. rubrum>Q. prinus.Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs.These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K>Mg>mass>Ca>S>P>N.  相似文献   
27.
泡状饶氏藻营养细胞的超微结构研究   总被引:1,自引:0,他引:1  
本文报道我国特有的一种绿藻门植物-泡状饶氏藻营养细胞的超微结构特征,植物体由3层细胞组成,外层细胞最小,细胞质比较丰富,含有较多的各种细胞器,液泡体积较小,中层细胞具有很大的中央液泡,细胞质成为贴壁的薄层,各种细胞器结构仍清晰可见,内层细胞极度液泡化,细胞质呈现退化状态,周生的片状叶绿体上有许多大小不等的穿孔,使叶绿体呈网孔状外貌,叶绿体主要由许多成对的类囊体组成,叶绿体上往往有几个蛋白核,蛋白核经常被1或2条类囊体穿过,呈现分隔状,本文也报道了泡状饶氏藻的线粒体,质体,内质网,高尔基体和核内微管的结构特征,根据泡状饶氏藻的类囊体形态与Ulva mutabilis非常相似以及蛋白核的超微结构特征,它与石莼科植物可能有较密切的亲缘关系,属于绿藻门中进化的类群。  相似文献   
28.
Summary The plant pathogenic hyphomyceteBotrytis cinerea has been shown to produce several trihydroxamate siderophores under conditions of low-iron stress. The total siderophores amounted to approximately 30 mg/l culture filtrate after 5 days of incubation in an asparagine/salt/glucose medium. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) on a reversed phase indicated that ferrirhodin is the predominant siderophore of this fungus. Chemical characterization of the principal siderophore by fast-atom-bombardment (FAB) mass spectrometry, nuclear magnetic resonance (1H-NMR,13C-NMR) and comparison with a reference revealed the identity with ferrirhodin. NMR studies performed on desferrirhodin (desferrirhodin) in dimethylsulfoxide and water revealed the existence of two conformers in D2O resulting from acis-trans isomerization of the hydroxamic acid groups. Comparative iron-uptake studies showed the following order of uptake inB. cinerea: ferrichrysin (100%), ferrirubin (57%), ferrirhodin (45%), hexahydroferrirhodin (45%), coprogen 6%. Concentration-dependent uptake of ferrirhodin resulted in saturation kinetics only in the low concentration range of 0–30 M (K m = 2.5 M,V max = 80 pmol min–1 mg(–1). A non-saturable, linear uptake was observed in the high concentration range of 30–80 M. The low concentration range appears to be the physiologically significant range, where siderophore-mediated iron transport inB. cinerea occurs.  相似文献   
29.
30.
离体培养下大豆体细胞胚胎发生的组织学研究   总被引:6,自引:0,他引:6  
大豆胚状体可以直接从未成熟的子叶表皮及表皮下面1—3层细胞发生。这些细胞经过脱分化后,首先形成细胞质浓厚、核大的胚的发生细胞,胚发生细胞再分裂形成胚性细胞团,胚性细胞团再继续分裂形成胚状体。胚状体的发育过程和合子胚一样,经过球形、心形,鱼雷期和子叶期等诸阶段发育成小植株。此外,在诱导胚状体发生过程中,还观察到另一值得注意的现象:在未成熟胚的子叶表皮下面1至较深处的数层细胞,也转变成分生状细胞团,这些分生状细胞团呈不规则状,从其起源看,可称它们为内生“胚状体”,这些内生“胚状体”培养至20天,即停止生长发育。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号