首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1579篇
  免费   22篇
  国内免费   52篇
  2023年   2篇
  2022年   12篇
  2021年   16篇
  2020年   83篇
  2019年   22篇
  2018年   20篇
  2017年   50篇
  2016年   52篇
  2015年   35篇
  2014年   68篇
  2013年   96篇
  2012年   73篇
  2011年   95篇
  2010年   69篇
  2009年   125篇
  2008年   110篇
  2007年   88篇
  2006年   95篇
  2005年   61篇
  2004年   47篇
  2003年   50篇
  2002年   35篇
  2001年   25篇
  2000年   19篇
  1999年   33篇
  1998年   11篇
  1997年   11篇
  1996年   27篇
  1995年   16篇
  1994年   14篇
  1993年   20篇
  1992年   12篇
  1991年   17篇
  1990年   15篇
  1989年   16篇
  1988年   12篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   8篇
  1983年   10篇
  1982年   18篇
  1981年   8篇
  1980年   5篇
  1979年   10篇
  1978年   9篇
  1977年   2篇
  1976年   6篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1653条查询结果,搜索用时 16 毫秒
91.
The deduced amino acid sequences of antifreeze proteins (AFPs) from larvae of the beetle Dendroides canadensis were determined from both complementary DNAs (cDNAs) and from peptide sequencing. These consisted of proteins with a 25-residue signal peptide and mature proteins 83 (Dendroides antifreeze protein; DAFP-1) or 84 (DAFP-2) amino acids in length which differed at only two positions. Peptide sequencing yielded sequences which overlapped exactly with those of the deduced cDNA sequences of DAFP-1 and DAFP-2, while the partial sequence of another AFP (DAFP-3) matched 21 of 28 residues. Seven 12- or 13-mer repeating units are present in these antifreeze proteins with a consensus sequence consisting of: Cys-Thr-X3-Ser-X5-X6-Cys-X8-X9-Ala-X11-Thr-X13, where X3 and X11 tend toward charged residues, X5 tends toward threonine or serine, X6 toward asparagine or aspartate, X9 toward asparagine or lysine, and X13 toward alanine in the 13-mers. The most interesting feature of these proteins is that throughout the length of the mature antifreeze proteins every sixth residue is a cysteine. These sequences are not similar to any of the known fish AFPs, but they are similar to AFPs from the beetle Tenebrio molitor. Accepted: 14 November 1997  相似文献   
92.
Soda lignin, dioxane lignin and milled lignin were isolated from Alfa grass (Stipatenacissima L.). The physico-chemical characterization of three different lignins: one industrial lignin precipitated from soda spent liquor and two lignin preparations isolated under laboratory conditions from Alfa grass (also know as Esparto grass) was performed. The structures of lignins were studied by three non-destructive (FT-IR, solid state 13C NMR and UV/visible spectroscopy) and two destructive (nitrobenzene oxidation and thermogravimetric analysis) methods. Elemental analysis and the methoxyl content determination were performed in order to determine the C9 formulae for the studied lignins. The total antioxidant capacity of the studied lignins has been determined and compared to commercial antioxidants commonly used in thermoplastic industry.  相似文献   
93.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   
94.
Ultrasound-biophysics mechanisms   总被引:1,自引:0,他引:1  
Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and biological materials interact. Ultrasound-induced bioeffect or risk studies focus on issues related to the effects of ultrasound on biological materials. On the other hand, when biological materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides the scientific basis for image production and risk assessment. Relative to the bioeffect or risk studies, that is, the biophysical mechanisms by which ultrasound affects biological materials, ultrasound-induced bioeffects are generally separated into thermal and non-thermal mechanisms. Ultrasonic dosimetry is concerned with the quantitative determination of ultrasonic energy interaction with biological materials.

Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the amplitude of the wave decreases with distance. This attenuation is due to either absorption or scattering. Absorption is a mechanism that represents that portion of ultrasonic wave that is converted into heat, and scattering can be thought of as that portion of the wave, which changes direction. Because the medium can absorb energy to produce heat, a temperature rise may occur as long as the rate of heat production is greater than the rate of heat removal. Current interest with thermally mediated ultrasound-induced bioeffects has focused on the thermal isoeffect concept. The non-thermal mechanism that has received the most attention is acoustically generated cavitation wherein ultrasonic energy by cavitation bubbles is concentrated. Acoustic cavitation, in a broad sense, refers to ultrasonically induced bubble activity occurring in a biological material that contains pre-existing gaseous inclusions. Cavitation-related mechanisms include radiation force, microstreaming, shock waves, free radicals, microjets and strain. It is more challenging to deduce the causes of mechanical effects in tissues that do not contain gas bodies. These ultrasonic biophysics mechanisms will be discussed in the context of diagnostic ultrasound exposure risk concerns.  相似文献   

95.
For ectothermic species, temperature is a key environmental factor influencing several aspects of their physiology and ecology, acting particularly on reproduction. To measure the consequences of a severe thermal stress during development on male reproduction, a cold shock (1h at -18 degrees C) was tested on Dinarmus basalis pupae. D. basalis (Hymenoptera: Pteromalidae) is a parasitoid wasp in which sperm management in both male and female is of prime importance. After a cold shock, developmental success was reduced, with a quarter of cold-shocked males not emerging correctly. The stress effects were estimated at the level of sperm stock in seminal vesicles of males at different ages and on the ability of 2-day-old males to access females in single and multiple mating and in male-male competition. Cold-shocked males had a reduced sperm stock compared to control males and this difference persisted with age. The rate of sperm production was similar in both groups. The consequences of a cold shock on male reproductive ability were perceptible in multiple mating and male-male competition but not in single mating. Cold-shocked males were at a disadvantage, inseminating fewer females and copulating less frequently. Finally, male pupae of D. basalis were able to withstand severe temperature stresses and their reproductive functions were partially preserved.  相似文献   
96.
Unfolding energetics and conformational stability of DLC8 monomer   总被引:1,自引:0,他引:1  
Krishna Mohan PM 《Biochimie》2007,89(11):1409-1415
To understand the rules governing the protein folding process it is essential to study the stability and unfolding of small monomeric proteins. Here, I present the pH dependent thermal unfolding energetics and conformational stability analysis of monomeric Dynein light chain protein (DLC8) in the pH range 3.5-2.0. DLC8 is the smallest and the most conserved light chain among the light chains of the dynein motor assembly. Thermal unfolding of DLC8 monomer is much complex with the presence of transient intermediates, which is in contrast to the notion that small proteins unfold via simple two-state process. The unfolding seems to be more cooperative at lower pH and the temperature of highest conformational stability (T(s)) is found to be maximum (295.7 K) at pH 2.76. Stability curves have been simulated to understand the thermodynamic parameters that govern the shapes of the experimentally obtained curves. Further, an effort has been made to correlate the observed differences in the denaturation energetics with the protein sequence in order to throw light on the structure-folding paradigm of the DLC8 monomer.  相似文献   
97.
The stability of liposomes coated with S-layer proteins from Lactobacillus brevis and Lactobacillus kefir was analyzed as a previous stage to the development of a vaccine vehicle for oral administration. The interactions of the different S-layer proteins with positively charged liposomes prepared with soybean lecithin or dipalmitoylphosphatidylcholine were studied by means of the variation of the Z potential at different protein-lipid ratios, showing that both proteins were able to attach in a greater extent to the surface of soybean lecithin liposomes. The capacity of these particles to retain carboxyfluorescein or calcein by exposure to bile salts, pancreatic extract, pH change and after a thermal shock showed that both S-layer proteins increased the stability of the liposomes in the same magnitude. The non-glycosylated protein from L. brevis protects more efficiently the liposomes at pH 7 than those from L. kefir even without treatment with glutaraldehyde.  相似文献   
98.
For subterranean rodents, searching for food by extension of the tunnel system and maintenance of body temperature are two of the most important factors affecting their life underground. In this study we assess the effect of ambient temperature on energetics and thermoregulation during digging in Ctenomys talarum. We measured o2 during digging and resting at ambient temperature (Ta) below, within, and above thermoneutrality. Digging metabolic rate was lowest at Ta within the thermoneutral zone and increased at both lower and higher temperatures, but body temperature (Tb) remained constant at all Tas. Below thermoneutrality, the cost of digging and thermoregulation are additive. Heat production for thermoregulation would be compensated by heat produced as a by-product of muscular activity during digging. Above thermoneutrality, conduction would be an important mechanism to maintain a constant Tb during digging.  相似文献   
99.
Priest Pot is an example of the abundant ponds that, collectively, contribute crucially to species diversity. Despite extensive biological study, little has been reported about the physical framework that supports its ecological richness. This article elucidates the physical character of Priest Pot’s water column and thus that of similar water bodies. Vertical thermal microstructure profiles were recorded during summer 2003 and analyzed alongside concurrent meteorological data. During summer stratification, the thermal structure appeared to be dominated by surface heat fluxes. Surface wind stress, limited by sheltering vegetation, caused turbulent overturns once a surface mixed layer was present but appeared to contribute little to setting up the thermal structure. Variations in full-depth mean stratification occurred predominantly over seasonal and ∼5-day time scales, the passage of atmospheric pressure systems being posited as the cause of the latter. In the uppermost ∼0.5 m, where the stratification varied at subdaily time scales, turbulence was active (sensu Ivey and Imberger 1991) when this layer was mixed, with dissipation values ε ∼ 10−8 m2 s−3 and vertical diffusivity KZ = 10−4 — 10−6 m2 s−1. Where the water column was stratified, turbulence was strongly damped by both buoyancy and viscosity, and KZ was an order of magnitude smaller. Vertical transport in the mixed layer occurred via many small overturns (Thorpe scale r.m.s. and maximum values were typically 0.02 m and 0.10 m, respectively), and seston were fully mixed through the water column.  相似文献   
100.
A novel cross-linked enzyme aggregates (CLEA) concept called combi-CLEA has been described. It is based upon the fact that CLEA can be made from heterogeneous populations of proteins/enzymes. Porcine pancreatic acetone powder crude extract was used for preparing CLEA in such a way that lipase, -amylase, phospholipase A2 activities were retained upto 100%. The lipase present in the CLEA showed greater thermal stability at 50 °C as compared to free enzyme. For lipase and phospholipase A2, Vmax/Km showed no significant change upon combi-CLEA formation but decreased significantly for -amylase activity from 190 to 114 min−1. The lipase activity and -amylase activity in CLEA were completely retained upto three cycles of use. The scanning electron microscopic (SEM) studies showed that morphology of CLEA changed upon inactivation by reuses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号