首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   18篇
  国内免费   2篇
  312篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   10篇
  2019年   9篇
  2018年   11篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   18篇
  2013年   18篇
  2012年   11篇
  2011年   15篇
  2010年   4篇
  2009年   8篇
  2008年   17篇
  2007年   28篇
  2006年   22篇
  2005年   29篇
  2004年   17篇
  2003年   17篇
  2002年   22篇
  2001年   11篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
31.
The genus Mystrium is revised for the Malagasy region. Six species, Mystrium barrybresslerisp. n., Mystrium labyrinthsp. n., Mystrium equessp. n., Mystrium mirrorsp. n., Mystrium shadowsp. n., and Mystrium janovitzisp. n. are described as new. Two existing names, Mystrium fallax Forel and Mystrium stadelmanni Forel, are synonymized with Mystrium voeltzkowi Forel and Mystrium mysticum Roger, respectively. All recognized species, including species outside of the Malagasy region, are assigned to one of the three newly proposed species groups. The associations between existing names and males are reexamined, and males of eight of the ten Malagasy species are described or redescribed. The taxonomic history of Mystrium highlights the importance of using unique identifiers when designating type specimens and the use of deposited vouchers in phylogenetic and ecological studies. Keys to species for workers, queens, and males are provided. Furthermore, a neotype for Mystrium mysticum is designated, as well as lectotypes for Mystrium camillae Emery, Mystrium rogeri Forel, Mystrium fallax Forel, Mystrium oberthueri Forel, Mystrium stadelmanni Forel, and Mystrium voeltzkowi Forel. Stigmatomma gingivale (Brown) is reassigned to Amblyopone as comb. rev. and Amblyopone awa Xu & Chu, Amblyopone kangba Xu & Chu, Amblyopone meiliana Xu & Chu, and Amblyopone zomae Xu & Chu are transferred to the genus Stigmatomma as comb. n.  相似文献   
32.
The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.  相似文献   
33.
Corrigendum     
正Li W,Wang B,Wang M,Chen M,Yin JM,Kaleri GM,Zhang RJ,Zuo TN,You X and Yang Q(2014)Cloning and characterization of a potato StAN11gene involved in anthocyanin biosynthesis regulation.J Integr Plant Biol 56(4):364–372.DOI:10.1111/jipb.12136The authors would like to draw the reader’s attention to an error in the following article:  相似文献   
34.
In order to assess the utility of nested clade analysis, both standard phylogenetic algorithms and nested clade analysis were performed on a geographically widespread survey of mitochondrial DNA haplotypes of the bamboo viper, Trimeresurus stejnegeri, within Taiwan. Gross tree topologies were congruent for all analyses and indicated the presence of two geographically overlapping clades within Taiwan. The smaller lineage was restricted to the north and east coasts, whereas the larger lineage occupied all but the northern range of the species within Taiwan including the Pacific offshore populations of Green and Orchid Islands. The phylogeographical pattern supports the existence of at least one colonization event from the continent since the initial isolation of Taiwan from the mainland in the Pliocene. However, determining the exact number of colonization events was not possible due to the simultaneous vicariant forces of hypothesized continental landbridge connections and the occurrence of dramatic in situ orogenesis throughout the Pleistocene. Nested clade analysis provided multiple temporal and spatial population historical inferences that are not possible with standard analyses and therefore should become widely applied to future phylogeographical studies.  相似文献   
35.
36.
The roan antelope (Hippotragus equinus) is the second largest African antelope, distributed throughout the continent in sub-Saharan savannah habitat. Mitochondrial DNA (mtDNA) control region sequencing (401 bp, n = 137) and microsatellite genotyping (eight loci, n = 137) were used to quantify the genetic variability within and among 18 populations of this species. The within-population diversity was low to moderate with an average mtDNA nucleotide diversity of 1.9% and average expected heterozygosity with the microsatellites of 46%, but significant differences were found among populations with both the mtDNA and microsatellite data. Different levels of genetic resolution were found using the two marker sets, but both lent strong support for the separation of West African populations (samples from Benin, Senegal and Ghana) from the remainder of the populations studied across the African continent. Mismatch distribution analyses revealed possible past refugia for roan in the west and east of Africa. The West African populations could be recognized together as an evolutionarily significant unit (ESU), referable to the subspecies H. e. koba. Samples from the rest of the continent constituted a geographically more diverse assemblage with genetic associations not strictly corresponding to the other recognized subspecies.  相似文献   
37.
The formation and maintenance of the Nothofagus beech gap in the South Island, New Zealand, has been the focus of biogeographical debate since the 1920s. We examine the historical process of gap formation by investigating the population genetics of fungus beetles: Brachynopus scutellaris (Staphylinidae) inhabits logs and is absent from the beech gap, and Hisparonia hystrix (Nitidulidae) is contiguous through the gap and is found commonly on sooty mould growing on several plant species. Both species show distinctive northern and southern haplotype distributions while H. hystrix recolonized the gap as shown by definitive mixing. B. scutellaris shows two major haplotype clades with strong geographical concordance, and unlike H. hystrix, has clearly defined lineages that can be partitioned for molecular dating. Based on coalescence dating methods, disjunct lineages of B. scutellaris indicate that the gap was formed less than 200 000 years ago. Phylogenetic imprints from both species reveal similar patterns of population divergence corresponding to recent glacial cycles, favouring a glacial explanation for the origin of the gap. Post-gap colonization by H. hystrix may have been facilitated by the spread of Leptospermum scoparium host trees to the area, and they may be better at dispersing than B. scutellaris which may be constrained by fungal host and/or microhabitat. The gap-excluded species B. scutellaris is found in both beech and podocarp-broadleaf forests flanking the Westland gap and its absence in the gap may be related to incomplete recolonization following glacial retreat. We also discuss species status and an ancient polymorphism within B. scutellaris .  相似文献   
38.
The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.  相似文献   
39.
Salipiger mucosus Martínez-Cànovas et al. 2004 is the type species of the genus Salipiger, a moderately halophilic and exopolysaccharide-producing representative of the Roseobacter lineage within the alphaproteobacterial family Rhodobacteraceae. Members of this family were shown to be the most abundant bacteria especially in coastal and polar waters, but were also found in microbial mats and sediments. Here we describe the features of the S. mucosus strain DSM 16094T together with its genome sequence and annotation. The 5,689,389-bp genome sequence consists of one chromosome and several extrachromosomal elements. It contains 5,650 protein-coding genes and 95 RNA genes. The genome of S. mucosus DSM 16094T was sequenced as part of the activities of the Transregional Collaborative Research Center 51 (TRR51) funded by the German Research Foundation (DFG).  相似文献   
40.
Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号