首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2014年   1篇
  2011年   1篇
  2008年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1977年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
We investigated the diversity and community structure of ectomycorrhizal (EcM) fungi in Pinus thunbergii stands on the eastern coast of Korea. We established two 10 × 10-m plots in six forest stands and sampled soil blocks containing rootlets of mature P. thunbergii trees. EcM roots were classified into morphological groups, and the fungal taxa associated with each morphotype were identified by sequencing the nuclear rDNA internal transcribed spacer region. Cenococcum geophilum and the Atheliales, Clavulinaceae, Russulaceae and Thelephoraceae species were the main members of the EcM fungal community, which included a total of 68 observed fungal taxa. As a whole, the community consisted of a few dominant fungal taxa, such as C. geophilum (28.6% relative abundance), and a large number of rare fungal taxa that showed low abundances and local distributions. Colonization patterns at the local site scale and at the scale of the study plots greatly differed among the EcM fungal taxa; C. geophilum was distributed extensively and was dominant in several study sites, whereas a certain Lactarius sp. was distributed locally but dominated in a given study site. We conclude with a discussion of the relationship between colonization patterns of EcM fungi and soil and environmental conditions.  相似文献   
12.
Fungal specificity bottlenecks during orchid germination and development   总被引:2,自引:0,他引:2  
Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of 'dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia , the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens , the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle.  相似文献   
13.
Achlorophyllous monotropoid plants (Monotropoideae, Ericaceae) are epiparasites that obtain all of their carbon from their host plants via connections with mycorrhizal fungi. The mycorrhizal fungi of the epiparasitic monotropoid Monotropastrum humile var. glaberrima were identified based on mitochondrial, large ribosomal DNA sequences, and were compared with those of another variety, M. humile var. humile. The fungi that inhabit M. humile var. glaberrimum belong to the Thelephoraceae, whereas that of M. humile var. humile is a member of the Russulaceae. Two explanations are possible for this phenomenon: a misunderstanding of the taxonomic position of M. humile var. glaberrimum, or a change in the fungal partner within the Monotropastrum.  相似文献   
14.
15.
16.
The environmental distribution of non-obligate orchid mycorrhizal (OM) symbionts belonging to the ‘rhizoctonia’ complex remains elusive. Some of these fungi, indeed, are undetectable in soil outside the host rhizosphere. A manipulation experiment was performed to assess the importance of neighbouring non-orchid plants and soil as possible reservoirs of OM fungi for Spiranthes spiralis, a widespread photosynthetic European terrestrial orchid species. Fungi of S. spiralis roots were identified by DNA metabarcoding before and 4 months after the removal of the surrounding vegetation and soil. Although such a treatment significantly affected fungal colonization of newly-formed orchid roots, most OM fungi were consistently associated with the host roots. Frequency patterns in differently aged roots suggest that these fungi colonize new orchid roots from either older roots or other parts of the same plant, which may thus represent an environmental source for the subsequent establishment of the OM symbiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号