首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2681篇
  免费   206篇
  国内免费   224篇
  3111篇
  2023年   29篇
  2022年   51篇
  2021年   52篇
  2020年   48篇
  2019年   133篇
  2018年   92篇
  2017年   59篇
  2016年   51篇
  2015年   61篇
  2014年   130篇
  2013年   195篇
  2012年   129篇
  2011年   117篇
  2010年   77篇
  2009年   107篇
  2008年   95篇
  2007年   110篇
  2006年   123篇
  2005年   106篇
  2004年   78篇
  2003年   80篇
  2002年   78篇
  2001年   53篇
  2000年   53篇
  1999年   55篇
  1998年   53篇
  1997年   40篇
  1996年   51篇
  1995年   50篇
  1994年   47篇
  1993年   41篇
  1992年   40篇
  1991年   40篇
  1990年   33篇
  1989年   39篇
  1988年   25篇
  1987年   18篇
  1986年   18篇
  1985年   36篇
  1984年   53篇
  1983年   47篇
  1982年   42篇
  1981年   38篇
  1980年   46篇
  1979年   36篇
  1978年   31篇
  1977年   28篇
  1976年   26篇
  1975年   24篇
  1973年   19篇
排序方式: 共有3111条查询结果,搜索用时 0 毫秒
71.
生物医药产业是中国医药制造业的第三大产业,也是粤港澳大湾区重点扶持的新兴高技术产业之一。透视产业主营业务收入与各类指标的关联情况是进一步指导粤港澳大湾区生物医药产业建设规划的必要之举。而灰色综合关联分析法是探索指标间关联程度的重要工具。通过多种权威途径获得粤港澳大湾区生物医药产业规模以上企业数量、企业孵化器数量、新增专利数、自然科学基金立项投入总额、非自然科学基金立项数量、产学研合作项数量六大指标数据。采用灰色关联分析法,将所得数据进行建模并求解,得出这六大指标与粤港澳大湾区生物医药产业主营业务收入的关联度。结果显示,规模以上企业数量与粤港澳大湾区生物医药产业主营业务收入的关联度最高,其次为自然科学基金立项投入总额,再次为产学研合作项数量,非自然科学基金立项数量位列第四,企业孵化器数量、新增专利数分别位列第五、第六。因此,谋求粤港澳大湾区生物医药产业的进一步发展应着重从提高规模以上企业数量、重视自然科学基金投入、加强政产学研合作3个层面入手。  相似文献   
72.
Three types of epidermal cultures of fish were used for toxicological investigations, a primary cell culture and a tissue culture prepared from the rainbow trout Oncorhynchus mykiss Walbaum and the cell line EPC, derived from a skin tumour of the carp Cyprinus carpio L. Two studies were carried out to compare the different culture systems. In the first cultures were incubated with nonylphenol and in the second set of experiments the cell cultures were exposed to a wastewater sample containing low concentrations of nonylphenol (NP). Both cell cultures were similarly sensitive to nonylphenol with respect to the endpoints cell viability (LC50 (24 h) 47.1 μM NP (primary cell culture) and 44.2 μM NP (EPC)) values and apoptotic rate (significantly increased apoptotic rate after exposure to 50 μM NP for 24 h, p < 0.001 (primary cell culture), p = 0.008 (EPC)). The explant culture was slightly less sensitive (increased apoptotic rate after exposure to 50 μM NP for 24 h, but not significant: p = 0.385), which could be due to the capabilities of a differentiated tissue, providing more protective repair mechanisms, compared with single cells. All cultures revealed a concentration–response relationship for the endpoint apoptotic rate after the application of nonylphenol for 24 h. After wastewater exposure, a significant decrease in the apoptotic rate was measured in the primary cell culture (dilution wastewater : medium 1:1:p = 0.018; dilution wastewater : medium 1:2:p = 0.003), whereas the cell line EPC did not reveal any effects. Our results show that the endpoint apoptotic rate is more sensitive than the parameter cell viability for detecting adverse effects of a wastewater sample.  相似文献   
73.
Complex tissue culture matrices, in which types and concentrations of biological stimuli (e.g. growth factors, inhibitors, or small molecules) or matrix structure (e.g. composition, concentration, or stiffness of the matrix) vary over space, would enable a wide range of investigations concerning how these variables affect cell differentiation, migration, and other phenomena. The major challenge in creating layered matrices is maintaining the structural integrity of layer interfaces without diffusion of individual components from each layer1. Current methodologies to achieve this include photopatterning2-3, lithography4, sequential functionalization5, freeze drying6, microfluidics7, or centrifugation8, many of which require sophisticated instrumentation and technical skills. Others rely on sequential attachment of individual layers, which may lead to delamination of layers9. DGMP overcomes these issues by using an inert density modifier such as iodixanol to create layers of varying densities10. Since the density modifier can be mixed with any prepolymer or bioactive molecule, DGMP allows each scaffold layer to be customized. Simply varying the concentration of the density modifier prevents mixing of adjacent layers while they remain aqueous. Subsequent single step polymerization gives rise to a structurally continuous multilayered scaffold, in which each layer has distinct chemical and mechanical properties. The density modifier can be easily removed with sufficient rinsing without perturbation of the individual layers or their components. This technique is therefore well suited for creating hydrogels of various sizes, shapes, and materials.A protocol for fabricating a 2D-polyethylene glycol (PEG) gel, in which alternating layers incorporate RGDS-350, is outlined below. We use PEG because it is biocompatible and inert. RGDS, a cell adhesion peptide11, is used to demonstrate spatial restriction of a biological cue, and the conjugation of a fluorophore (Alexa Fluor 350) enables us to visually distinguish various layers. This procedure can be adapted for other materials (e.g. collagen, hyaluronan, etc.) and can be extended to fabricate 3D gels with some modifications10.  相似文献   
74.
Explant culture allows manipulation of developing organs at specific time points and is therefore an important method for the developmental biologist. For many organs it is difficult to access developing tissue to allow monitoring during ex vivo culture. The slice culture method allows access to tissue so that morphogenetic movements can be followed and specific cell populations can be targeted for manipulation or lineage tracing.In this paper we describe a method of slice culture that has been very successful for culture of tooth germs in a range of species. The method provides excellent access to the tooth germs, which develop at a similar rate to that observed in vivo, surrounded by the other jaw tissues. This allows tissue interactions between the tooth and surrounding tissue to be monitored. Although this paper concentrates on tooth germs, the same protocol can be applied to follow development of a number of other organs, such as salivary glands, Meckel''s cartilage, nasal glands, tongue, and ear.  相似文献   
75.
76.
77.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   
78.
Huntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17. We have determined that N17 acts as a nuclear export sequence (NES) within Htt exon and when fused to yellow fluorescent protein. We have defined amino acids within N17 that constitute the nuclear export sequence (NES). Mutation of any of the conserved residues increases nuclear accumulation of Htt exon 1. Nuclear export of Htt is sensitive to leptomycin B and is reduced by knockdown of exportin 1. In HEK293 cells, NES mutations decrease overall Htt aggregation but increase the fraction of cells with nuclear inclusions. In primary cultured neurons, NES mutations increase nuclear accumulation and increase overall aggregation. This work defines a bona fide nuclear export sequence within N17 and links it to effects on protein aggregation. This may help explain the important role of N17 in controlling Htt toxicity.  相似文献   
79.
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.  相似文献   
80.
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号