首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   8篇
  1986年   3篇
  1984年   2篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
排序方式: 共有121条查询结果,搜索用时 78 毫秒
41.
The relatively non-toxic dye, rhodamine 123 (R123), was incorporated into the frustule of Thalassiosira weissflogii Grun. clone ACTIN in direct proportion to biogenic silica (BSi). R123 was used together with the DNA stain propidium iodide to track and quantify Si deposition during the cell cycle of T. weissflogii using flow cytometry. Silicon deposition was not continuous through the cell cycle. Deposition of the valves occurred during M phase. The hypocingulum was largely deposited during G1 with some suggestion of minor girdle band deposition during G2. Silicon deposition did not occur during S phase. Assuming that a complete frustule consists of an epivalve, epicingulum, hypocingulum, and hypovalve, then 40% of cellular BSi was contained within the cingulum of T. weissflogii with 60% present in the valves. These percentages correspond to 0.38 pmol Si in the two cingula and 0.57 pmol Si in the valves. Temporal differences in the timing of silicic acid uptake and deposition during the cell cycle of T. weissflogii suggested that deposition of both the new valves and the cingulum is supported by an internal pool of dissolved Si acquired during G2.  相似文献   
42.
Tracer techniques using the stable isotope 30Si were used to measure rates of silicic acid uptake and silica dissolution in silicon replete and silicon depleted populations of 2 clones of the marine diatom Thalassiosira pseudonana Hasle & Heimdal. Uptake kinetics were describable using the Michaelis-Menten equation for enzyme kinetics, and no threshold concentration for uptake was evident. The maximum specific uptake rate of the estuarine clone 3H (0.062–0.092 · h?1) was higher than that of the Sargasso Sea clone 13-1 (0.028–0.031 · h?1), but half-saturation constants for uptake by the 2 clones were not measurably different (0.8–2.3 μM for 3H; 1.4–1.5 μM for 13-1). There was little or no light dependence of uptake in populations grown under optimal light conditions prior to the experiment. Exponentially growing populations released silicic acid to the medium by dissolution of cellular silica at rates ranging from 6.5 to 15% of the maximum uptake rate.  相似文献   
43.
The effect of the sinking rate, or rate of medium flow (φ) on the rate of phosphate incorporation (V) by the planktonic diatoms Thalassiosira fluviatilis Hust. and T. pseudonana Hasle & Heimdal in batch and chemostat cultures was determined by passing medium at defined flow rates (0.5–25.0 mm·min?1) over algae on membrane filters. At concentrations from 1 to 100 μg phosphorus·l?1 V, increases with increasing velocity of flow, approaching a maximum value (Vm) as described by the empirical relationship: where Kφ is the sinking rate value when V = 1/2 Vm+ Vo and Vo is the uptake at 0 rate of flow. By comparing uptake at controlled flow with uptake in a vigorously stirred medium, the phosphate concentration in the cell boundary layer can be determined. The sinking rate that reduces the phosphate concentration in the boundary layer to half of nominal concentration in the medium is much lower for the larger T. fluviatilis than for T. pseudonana. For both diatoms, it is inversely related to the nominal concentration.  相似文献   
44.
The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear‐encoded plastid‐localized proteins contain N‐terminal bipartite targeting peptides with the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear‐encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid‐localized proteins with both high sensitivity and high specificity. To identify nucleus‐encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full‐length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.  相似文献   
45.
The effects of selenium deficiency on the siliceous and nonsiliceous components of the planktonic marine diatom Thalassiosira pseudonana (Hust.) Hasle and Heimdal (clone 3H) are examined using light and electron microscopy. Selenium deficiency induces elongation along the pervalvar axis initially as a result of chain formation caused by the failure of sibling cells to separate and subsequently by cell elongation via the production of hyaline girdle bands. In Se-deficient cultures cell elongation involves the blockage of both mitotic and cytokinetic components of cell division. Selenium deficiency results in ultrastructural alterations in the reticular membrane system and in mitochondrial and chloroplast membranes. Various types of inclusions are seen in vacuolar areas and the accumulation of lipid reserves is evident in Se-deficient cells. These results provide indirect evidence for a metabolic Se requirement in this algal species.  相似文献   
46.
Although activity of the enzyme nitrate reductase (NR) can potentially be used to predict the rate of nitrate incorporation in field assemblages of marine phytoplankton, application of this index has met with little success because the relationship between the two rates is not well established under steady-state conditions. To provide a basis for using NR activity measurements, the relationships among NR activity, growth rate, cell composition, and nitrate incorporation rate were examined in cultures of Thalassiosira pseudonana (Hustedt)Hasle and Heimdal, growing a) under steady-state light limitation, b) during transitions between low and high irradiance (15 or 90 μmol quanta.m?2.s?1), and c) under steady-state nitrate limitation. Using a modified assay for NR involving additions of bovine serum albumin to stabilize enzyme activity, NR activity in light-limited cultures was positively and quantitatively related to calculated rates of nitrate incorporation, even in cultures that were apparently starved of selenium. During transitions in irradiance, growth rates acclimated to new conditions within 1 day; through the transition, the relationship between NR activity and nitrate incorporation rate remained quantitative. In nitrate-limited chemostat cultures, NR activity was positively correlated with growth rate and with nitrate incorporation rates, but the relationship was not quantitative. NR activity exceeded nitrate incorporation rates at lower growth rates (<25% of nutrient-replete growth rates), but chemostats operating at such low dilution rates may not represent ecologically relevant conditions for marine diatoms. The strong relationship between NR activity and nitrate incorporation provides support for the idea that NR is rate-limiting for nitrate incorporation or is closely coupled to the rate-limiting step. In an effort to determine a suitable variable for scaling NR activity, relationships between different cell components and growth rate were examined. These relationships differed depending on the limiting factor. For example, under light limitation, cell volume and cell carbon content increased significantly with increased growth rate, while under nitrate limitation cell volume and carbon content decreased as growth rates increased. Despite the differences found between cell composition and growth rate under light and nitrate limitation, the relationships between NR activity scaled to different compositional variables and growth rate did not differ between the limitations. In field situations where cell numbers are not easily determined, scaling NR activity to particulate nitrogen content may be the best alternative. These results establish a strong basis for pursuing NR activity measurements as indices of nitrate incorporation in the field.  相似文献   
47.
The HPLC separation of fluorescent o-phtaldialdehyde (OPA) derivatives has been applied to the assay of free amino acids from five microalgae commonly used in aquaculture: Tetraselmis suecica, Skeletonema costatum, Chaetoceros calcitrans, Thalassiosira sp. and Isochrysis galbana, as part an assessment of their potential use in cosmetic products. Thirteen free amino acids were analyzed using High Performance Liquid Chromatography. There were considerable differences between species. However, four amino acids were responsible for more than 60% total concentration in all species: ASP, GLU, ARG and TYR; the next most important (accounting for less than 30%) were: ALA, VAL, PHE and LYS. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
48.
Cell division patterns in Thalassiosira weissflogii (Grun.), Hymenomonas carterae (Braarud and Fagerl), and Amphidinium carteri (Hulburl) grown in cyclostat culture were analyzed as functions of the periodic supply of light and the limiting nutrient (ammonium) and of combinations of these two factors. In all three species, division patterns were phased by light/dark cycles in N–limited as well as N–replte conditions, and also to ammonium pulses in N–limited growth in continuous light. Both the degree and timing of the cell cycle phasing varied among species. When both stimuli were present, the influence of the photocycle overrode the N–pulse stimulus in H. carterae and A. carteri. while in T. weissflogii, division was always phased by the timing of the N–pulse regardless of the phase angle between the photocycle and the pulse.  相似文献   
49.
Twenty-one intracellular free amino acids were analysed during a 12-12 h light-dark cycle, on duplicate axenic cultures of Thalassiosira weissflogii (clone Actin, Provasoli-Guillard CCMP) under either Si-sufficient or Si-starved conditions. Total concentrations ranged between 40 and 165 fmol/cell. Total level as well as individual levels of amino acids decreased during the dark period, and GLN/GLU ratio was lower during the dark period. All these results were correlated with the light-dark carbon metabolism of the algae and related to the protein synthesis at night. The Si-starved cultures showed a lower total level of FAA compare to the Si-sufficient cultures, especially in the light period. Silica status of the cells affected more the metabolites of the dark respiration than the photorespiratory metabolites SER and GLY. Si deprivation induced higher range of ALA and VAL, and a decrease of the TCA metabolites GLU & ASP. Additionally, the relative percentage of ASP increased under Si starvation, at the expense of GLU, and this shift was emphasized in the dark period.  相似文献   
50.
Twelve clones (seven species) representative of centric diatoms dominant in the spring phytoplankton bloom in the Gulf of Maine were isolated and rendered axenic. Genera included were Thalassiosira, Porosira and Chaetoceros. Unlike most centric diatoms studied previously, none of these has an absolute requirement for vitamin B12. However, B12 (5 ng.l-1) stimulated growth of most clones by eliminating or reducing the lag phase and increasing the growth rate. Bloom population densities developed 4–54 days earlier with B12 present. Several clones grown with B12 removed more than 80% of the vitamin from the medium. When grown in vitamin-free medium the cells put 0.01–0.7 ng.l-1 B12 into the medium. We conclude that vitamin B12 is of ecological significance even though the requirement for it is not absolute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号