首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   8篇
  1986年   3篇
  1984年   2篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
排序方式: 共有121条查询结果,搜索用时 46 毫秒
31.
Polyunsaturated fatty acids (PUFAs) are essential macromolecules that are synthesized by phytoplankton during spring bloom, and they play a key role in the Arctic food web. They are, however, considered to be sensitive to oxidation by UV radiation (280-400 nm). Changes in the food quality of primary producers may affect the transport of biomass and energy in the whole ecosystem. Using a common Arctic diatom, we looked at the effect of ambient and increased UV radiation on its nutritional quality, specifically, the fatty acid composition and elemental ratios. In May 2004, in the archipelago of Svalbard (79° N), a unialgal culture of Thalassiosira antarctica var. borealis was subjected to a 17-day experiment in outdoor aquaria. The diatoms were kept in semi-continuous culture (40 1) and exposed to three treatments with different levels of UV radiation: none (UV-shielded), ambient, and enhanced. Fatty acid composition, C:N:P ratios, photosynthetic pigment composition, optimum quantum yield of PSII, and cell numbers were analysed over the experimental period. An initial increase in PAR (photosynthetically active radiation, 400-700 nm) intensities profoundly affected the fatty acid composition and substantially inhibited the synthesis of PUFAs, but the relative amounts of PUFAs were not reduced by UV radiation. Enhanced UV radiation did, however, cause a significant reduction in optimum quantum yield of PSII and affected some fatty acids, mainly 18:0 and 16:1 n-7, during the first week of the experiment. Both ambient and enhanced UV radiation caused significantly lower C:P and N:P ratios. At the same time, these treatments elicited a higher relative content of the photoprotective pigments diadinoxanthin and diatoxanthin. After acclimation to the new light levels these effects faded off. Thus, brief periods with high light exposure may cause significant changes in photosynthetic activity and food quality, but the capacity for photo-acclimation seems high. The impact of UV radiation seems to be less important for food quality than that of PAR during a sudden rise in total light intensity.  相似文献   
32.
33.
We tested the effects of UV radiation (UVR) and nitrate limitation on the production of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), and particulate dimethylsulfoxide (DMSOp) in natural seawater from the Gulf of Mexico and in phytoplankton cultures. DMS/Chl a ratios in PAR-only and PAR + UV-exposed seawater were 0.44–2.0 and 0.46–1.9 nmol DMS μg−1 Chl a, respectively, whereas the ratios in cultures of Amphidinium carterae were 1.0–2.2 nmol μg−1 in PAR-exposed samples and 0.91–2.1 nmol μg−1 in PAR + UV-exposed samples. These results suggested that UVR did not substantially affect DMS/Chl a ratios in seawater and A. carterae culture samples. Similarly, UVR had no significant effect on DMSOp/Chl a in seawater samples (0.83–1.6 nmol DMSO μg−1 Chl a for PAR + UV vs. 0.70–1.5 nmol μg−1 for PAR-exposed seawater samples, respectively) or in A. carterae cultures (0.20–1.3 and 0.19–0.88 nmol DMSO μg−1 Chl a in PAR + UV- and PAR-exposed cultures, respectively). In an experiment with the diatom, Thalassiosira oceanica, the culture was grown in high nitrate (30 μM) or low nitrate (6 μM) media and exposed to PAR-only or PAR + UV. The low nitrate, PAR-only samples showed an increase of intracellular dimethylsulfoniopropionate (DMSP) concentration from 2.1 to 15 mmol L−1 in 60 h, but the increase occurred only after cultures reached the stationary phase. Cultures of T. oceanica grown under UVR had lower growth rates than those under PAR-only (μ′ = 0.17 and 0.32 d−1, respectively) and perhaps did not experience severe nitrate limitation even in the low nitrate treatment. These results suggest that the elevated UVR in low nitrate environments could result in reduction of DMSP in some species, whereas DMSP concentrations would not be affected in eutrophic areas.  相似文献   
34.
海链藻(Thalassiosira)与圆筛藻(Coscinodiscus)的形态学比较研究   总被引:1,自引:0,他引:1  
李扬 《植物研究》2009,29(3):282-288
海链藻属(Thalassiosira)和圆筛藻属(Coscinodiscus)的种类繁多,是硅藻门中的大属和代表属。两者的形态学特征具有较多相似之处,易混淆鉴定。通过光学显微镜和电镜观察,比较研究了海链藻和圆筛藻种类的形态学特征。海链藻种类除了具有1~2个唇形突之外,还具有数量较多的支持突,少数种类具有闭合突;筛膜位于壳面内侧;中孔在壳面外侧。而圆筛藻种类只具有数量众多的唇形突,且其中两个较大;筛膜位于壳面外侧;中孔在壳面内侧。由于两属形态学特征的区别只有在电镜下才能清晰观察到,因此尚有较多的分类修订工作需要进行。  相似文献   
35.
36.
Spatial variability of phytoplankton as well as hydrological and chemical conditions in the Tagus coastal waters were studied during the spring of 1994. The highly patchy distribution of phytoplankton and the community structure were related to the specific abiotic conditions prevailing in the area. Two main water masses were distinguished: a tidally mixed one alongshore Lisbon-cape Espichel and a stratified region strongly related to the Tagus plume river. The latter seems to control, to some extent, the spatial phytoplankton variability and the timing and size of the spring bloom. The highest surficial levels of nutrients, specifically PO4 3–=1.00 M, NO3 =16.0 M and Si(OH)4=14.6 M, were clearly associated with Tagus river discharges, while the lowest levels were attained offshore in the zone of maximum chlorophyll a concentrations (30 mg m–3) reflecting the occurrence of high nutrient consumption. Furthermore, the near depletion of PO4 3– indicates P limitation for phytoplankton growth. The diatom Detonula pumila (0.1×106 cells l–1) was the dominant species of phytoplankton communities in the mixed zone, alongshore Lisbon-cape Espichel, whereas, the small diatom Thalassiosira sp. (3×106 cells l–1) was blooming offshore, associated with the stratified region.  相似文献   
37.
38.
Two marine diatoms were studied singly and in mixed culture. Thalassiosira pseudonana (Hust.) Hade & Heimdal was capable of a higher growth rate (μmax) than Phaeodactylum tricornutum Bohlin. In two-species batch cultures P. tricornutum took over in the latter portion of the exponential phase, possibly due to allelopathy. The filtrate from this species caused an initial lag phase and a reduced terminal population density for T. pseudonana. Two-species continuous cultures showed verification of these interactions. At high dilution rate (i.e., high growth rate) P. tricornutum washed out when added at low density, whereas T. pseudonana maintained constant cell density. However, when sufficient density of P. tricornutum was added as a contaminant, both species washed out. At a lower dilution rate P. tricornutum increased in density when added and eventually reached a stable population; T. pseudonana then washed out.  相似文献   
39.
In unicellular algae, ammonium can be assimilated into glutamate through the action of glutamate dehydrogenase (GDH) or into glutamine through the sequential activities of glutamine synthetase and glutamate 2-oxoglutarate amidotransferase (GS-GOGAT pathway). We have shown that the first radio-labeled product of assimilation of 13NH4+ (t1/2= 10 min) was glutamine in the marine diatom Thalassiosira pseudonana (Hustedt). When GS-GOGAT was inhibited with methionine sulfoximine, the incorporation of radioactivity into both glutamine and glutamate was blocked, implying that the radio-labeled glutamate is formed from glutamine. Glutamine was also the first labeled product when the intracellular concentration of ammonium was elevated by preincubation with unlabeled ammonium. The results indicate that the GS-GOGAT pathway is the primary pathway for the assimilation of nitrogen in T. pseudonana.  相似文献   
40.
Several studies have suggested that phytoplankton play a role in the iodine cycle. Using a short-term incubation technique for determining the uptake of iodate by phytoplankton, cultures of Thalassiosira oceanica Hasle, Skeletonema costatum (Greville) Cleve, Emiliania huxleyi (Lohmann) Hay and Mohler, and Dunaliella tertiolecta Butcher were found to be capable of assimilating iodate at rates ranging from 0.003 to 0.24 nmol IO3?·μg chlorophyll a?1·h?1. The kinetics for the uptake of iodate can be modeled, and the similarity between the model and experimental results suggests that there is a steady state between iodate uptake and release of dissolved iodine from the cells, presumably in the form of iodide. Two experiments were conducted in the Sand Shoal Inlet of the Cobb Bay estuary (37°15′N, 75°50′W). The uptake of iodate was 0.26 and 0.08 nmol IO3?·μg chlorophyll a?1·h?1 during high and low tide, respectively. Using field estimates based on measured levels of iodate in the estuary, we estimate that phytoplankton can take up as much as 3% of the ambient pool of iodate on a daily basis and the entire pool in about 1 month. Thus, phytoplankton can be a significant component of the global iodine cycle by mediating changes in the speciation of iodine in the marine environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号