首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2981篇
  免费   145篇
  国内免费   133篇
  3259篇
  2024年   11篇
  2023年   33篇
  2022年   49篇
  2021年   51篇
  2020年   62篇
  2019年   80篇
  2018年   87篇
  2017年   67篇
  2016年   64篇
  2015年   80篇
  2014年   127篇
  2013年   327篇
  2012年   68篇
  2011年   135篇
  2010年   84篇
  2009年   122篇
  2008年   124篇
  2007年   130篇
  2006年   120篇
  2005年   112篇
  2004年   110篇
  2003年   104篇
  2002年   102篇
  2001年   73篇
  2000年   67篇
  1999年   56篇
  1998年   72篇
  1997年   62篇
  1996年   41篇
  1995年   60篇
  1994年   32篇
  1993年   55篇
  1992年   41篇
  1991年   44篇
  1990年   39篇
  1989年   45篇
  1988年   38篇
  1987年   31篇
  1986年   27篇
  1985年   33篇
  1984年   39篇
  1983年   23篇
  1982年   26篇
  1981年   19篇
  1980年   16篇
  1979年   22篇
  1978年   18篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有3259条查询结果,搜索用时 0 毫秒
991.
《Free radical research》2013,47(5-6):307-313
Oxidation-induced increase of the net negative charge on low-density lipoprotein was studied by electro-phoretic mobility and by electron paramagnetic resonance. The negative-charge increase is associated not only with neutralization of the lysine residues of apoprotein B, but also with the exposition of the excessive negatively charged residues on the lipoprotein surface. The accumulation of the negatively charged residues is believed to be brought about by the conformational change of apoprotein B, triggered by neutralization of lysines and cleavage of peptide bonds. Alternatively, reactive oxygen species could also convert histidine to aspartic acid and proline to glutamic acid.  相似文献   
992.
Book review     
《Free radical research》2013,47(3):187-188
Oxygen Free Radicals in Shock (International Workshop on Oxygen Free Radicals in Shock, Florence, May 31–June 1, 1985), Karger, Basel, 1986, 248 pp.  相似文献   
993.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   
994.
《Free radical research》2013,47(7):883-890
Abstract

This study aimed to determine the effect of haemolysis on plasma oxidation and nitration in sickle cell disease (SCD) patients. Blood was collected from haemoglobin (Hb)A volunteers and homozygous HbSS patients who had not received blood transfusions in the last 3 months. Haemolysis was characterised by low levels of haemoglobin and haptoglobin and high levels of reticulocyte, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), plasma cell-free haemoglobin, bilirubin, total lactate dehydrogenase (LDH) and dominance of LDH-1 isoenzyme. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were measured to evaluate oxidised lipids, oxidised and nitrated proteins, respectively. Plasma nitrite–nitrate levels were also determined to assess nitric oxide (NO) production in both SCD patients and controls. Markers of haemolysis were significantly evident in SCD patients compared to controls. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were markedly elevated in SCD patients compared to controls. Linear regression analysis revealed a significant inverse correlation between haemoglobin and reticulocyte counts and a significant positive correlation of plasma cell-free haemoglobin with protein carbonyl and nitrotyrosine levels. The obtained data shows that increased haemolysis in SCD increases plasma protein oxidation and nitration.  相似文献   
995.
《Free radical research》2013,47(10):1256-1266
Abstract

Elevated levels of myeloperoxidase (MPO) are associated with poor cardiovascular outcomes. MPO uses H2O2 to generate oxidants including HOCl and HOSCN, from chloride and thiocyanate (SCN?) ions, respectively. SCN? is the preferred substrate. Elevation of this anion decreases HOCl generation and increases HOSCN formation, a thiol-specific oxidant. Such changes are of potential relevance to people with elevated SCN? levels, such as smokers. In this retrospective study, we examined whether elevated plasma MPO and SCN? levels increased thiol oxidation as a result of increased HOSCN formation, and impacted on long-term survival in 176 subjects (74 non-smokers, 46 smokers, and 56 previous smokers) hospitalized after a first myocardial infarction. Plasma thiols were not significantly altered in smokers compared to non-smokers or past smokers. However, significant positive correlations were detected between SCN? levels and MPO-induced thiol loss in the total population (r = 0.19, P = 0.020) and smokers alone (r = 0.58, P < 0.0001). Twelve-year all-cause mortality data indicate that above median MPO is significantly associated with higher mortality, but below-median MPO and above-median SCN? results in increased survival, compared to below-median SCN?. Cox proportional hazard analysis showed a significant decrease in mortality for each 1 μM increase in SCN? (0.991; P = 0.040). Subject age was, as expected, a strong predictor of subject survival. Overall these data suggest that subjects with below-median MPO and above-median SCN? have better long-term survival, and that elevated plasma levels of SCN? might be protective in at least some populations.  相似文献   
996.
Methionine sulphoxide reductase A (MSRA) that reduces methionine-S-sulphoxide back to methionine constitutes a catalytic antioxidant mechanism to prevent oxidative damage at multiple sub-cellular loci. This study examined the relative importance of protection of the cytoplasm and mitochondria by MSRA using A-10 vascular smooth muscle cells, a cell type that requires a low level of reactive oxygen species (ROS) for normal function but is readily damaged by higher concentrations of ROS. Adenoviral over-expression of human MSRA variants, targeted to either mitochondria or the cytoplasm, did not change basal viability of non-stressed cells. Oxidative stress caused by treatment with the methionine-preferring oxidizing reagent chloramine-T decreased cell viability in a concentration-dependent manner. Cytoplasmic MSRA preserved cell viability more effectively than mitochondrial MSRA and co-application of S-methyl-L-cysteine, an amino acid that acts as a substrate for MSRA when oxidized, further increased the extent of protection. This suggests an important role for an MSRA catalytic antioxidant cycle for protection of the cytoplasmic compartment against oxidative damage.  相似文献   
997.
Retinoic acid is considered to be the active metabolite of retinol, able to control differentiation and proliferation of epithelia. Retinoic acid biosynthesis has been widely described with the implication of multiple enzymatic activities. However, our understanding of the cell biological function and regulation of this process is limited. In a recent study we evidenced that milk xanthine oxidase (E.C. 1.17.3.2.) is capable to oxidize all-trans-retinol bound to CRBP (holo-CRBP) to all-trans-retinaldehyde and then to all-trans-retinoic acid. To get further knowledge regarding this process we have evaluated the biosynthetic pathway of retinoic acid in a human mammary epithelial cell line (HMEC) in which xanthine dehydrogenase (E.C. 1.17.1.4.), the native form of xanthine oxidase, is expressed. Here we report the demonstration of a novel retinol oxidation pathway that in the HMEC cytoplasm directly conduces to retinoic acid. After isolation and immunoassay of the cytosolic protein showing retinol oxidizing activity we identified it with the well-known enzyme xanthine dehydrogenase. The NAD+ dependent retinol oxidation catalyzed by xanthine dehydrogenase is strictly dependent on cellular retinol binding proteins and is inhibited by oxypurinol. In this work, a new insight into the biological role of xanthine dehydrogenase is given.  相似文献   
998.
Biosimilars offer an avenue for potential cost savings and enhanced patient access to various emerging therapies in a budget neutral way. Biosimilars of the granulocyte colony stimulating factor (GCSF) are an excellent example in this regard with as many as 18 versions of the drug being currently approved across globe for treatment of neutropenia. Here, we identified oxidation of the various methionine residues in GCSF as a key heterogeneity that adversely impact its efficacy. In agreement with earlier studies, it was found that oxidation of Met 122 and Met 127 significantly contributes toward reduction of GCSF efficacy, measured using binding affinity to the GCSF receptor. The combination of molecular dynamics simulation along with structural characterization studies established that oxidation of Met 127 and Met 122 brings about a small local conformational change around the B‐C loop in GCSF structure due to slight displacement of Asp113 and Thr117 residues. The simulation studies were validated using fluorescence quenching experiments using acrylamide as quencher and site‐directed mutagenesis by replacing Met 122 and Met 127 residues with alanine. The results of this study lead to an enhanced mechanistic understanding of the oxidation in GCSF and should be useful in protein engineering efforts to design stable, safe, and efficacious GCSF product. In addition, the structure‐function information can provide targets for protein engineering during early drug development and setting specifications of allowable limits of product variants in biosimilar products.  相似文献   
999.
Cysteine oxidation is important in cellular redox regulation, signaling, and biocatalysis. To understand the biological relevance of cysteine oxidation, it is desirable to identify the proteins involved, the site of the oxidized cysteine, and the relevant oxidation states. Because the thiol of cysteine can be converted to a wide range of oxidation states, mapping these oxidative modifications is challenging. The dynamic and reversible nature of many cysteine oxidation states compounds the difficulty in such proteomic analyses. In this review, we examine methods to detect cysteine sulfenic acid — a particularly challenging functional group to analyze because of its reactive nature. We focus on the selectivity of recently reported probes and discuss some challenges and opportunities in this field.  相似文献   
1000.
Methionine and choline-deficient diet (MCD)-induced fatty liver is one of the best-studied animal models of fatty liver disease. The present study was performed to clarify the relative contributions of individual lipid metabolic pathways to the pathogenesis of MCD-induced fatty liver. Hepatic lipogenesis mediated by the sterol regulatory element-binding protein (SREBP-1c) was increased at 1 week, but not at 6 weeks, of MCD feeding. On the other hand, 14C-palmitate oxidation did not change at 1 week, but significantly decreased at 6 weeks. This decrease was associated with increased expression of fatty acid translocase, a key enzyme involved in fatty acid uptake. Expression of endoplasmic reticulum stress markers was increased in mice given MCD for both 1 and 6 weeks. These findings suggest the presence of time-dependent differences in lipid metabolism in MCD-induced fatty liver disease: SREBP-1c-mediated lipogenesis is important in the early stages of fatty liver disease, whereas increased fatty acid uptake and decreased fatty acid oxidation become more important in the later stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号