首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2893篇
  免费   196篇
  国内免费   170篇
  2024年   5篇
  2023年   53篇
  2022年   64篇
  2021年   75篇
  2020年   106篇
  2019年   131篇
  2018年   119篇
  2017年   72篇
  2016年   78篇
  2015年   81篇
  2014年   165篇
  2013年   229篇
  2012年   76篇
  2011年   140篇
  2010年   112篇
  2009年   110篇
  2008年   141篇
  2007年   168篇
  2006年   149篇
  2005年   113篇
  2004年   83篇
  2003年   103篇
  2002年   106篇
  2001年   73篇
  2000年   70篇
  1999年   63篇
  1998年   49篇
  1997年   65篇
  1996年   48篇
  1995年   32篇
  1994年   41篇
  1993年   40篇
  1992年   39篇
  1991年   40篇
  1990年   16篇
  1989年   26篇
  1988年   23篇
  1987年   16篇
  1986年   15篇
  1985年   22篇
  1984年   22篇
  1983年   12篇
  1982年   11篇
  1981年   10篇
  1980年   14篇
  1979年   10篇
  1978年   4篇
  1977年   7篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3259条查询结果,搜索用时 15 毫秒
51.
Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.  相似文献   
52.
缺氧促进热休克蛋白70在肺动脉平滑肌细胞中的表达   总被引:2,自引:0,他引:2  
冯晓东  蔡英年 《生理学报》1995,47(5):448-452
缺氧性肺动脉高压中肺动脉结构重组,中膜平滑肌细胞增殖并迁移,但机制不明。本研究观察缺氧对肺动脉平滑肌细胞(PASMC)细胞周期、DNA合成及细胞增殖的影响,并通过观察缺氧对PASMC热休克蛋白70(HSP70)表达的影响,初步探讨缺氧的作用是如何介导的。结果表明缺氧可直接或协同内皮质-1促进PASMC DNA合成及细胞增殖,并可增加HSP70在PASMC中的表达。  相似文献   
53.
54.
内皮素-1对缺氧肺动脉平滑肌细胞的增殖作用   总被引:2,自引:0,他引:2  
内皮素(ET)是至今所发现的最强的内源性血管收缩肽,近年来发现ET-1能促进血管平滑肌细胞增殖。本研究表明ET-1对缺氧培养的肺动脉平滑肌细胞(PASMC)有剂量依赖的增殖作用,缺氧可促进PASMC的DNA合成且增加ET-1的丝裂原作用。ET-1的丝裂原作用主要由其A型受体(ETR_A)所介导,ETR_A的特异拮抗剂BQ123可显著抑制缺氧以及缺氧与ET-1协同所产生的增殖作用,而且发现ETR_A在缺氧培养的PASMC中的表达显著高于常氧对照组PASMC。本研究表明ET-1参与了缺氧性肺动脉结构重组,而缺氧可增强PASMC对ET-1的增殖反应性。  相似文献   
55.
The binding of monoiodo 125I-Trp11-neurotensin to purified rat gastric fundus smooth muscle plasma membranes was characterized. Specific binding of ligand in subcellular fractions from rat fundus smooth muscle showed a distribution that paralleled that of several plasma membrane marker enzymes. 125I-Trp11-neurotensin binding to smooth muscle plasma membranes at 25 degrees C was maximal at 30 min, reversible and saturable. Scatchard analysis of equilibrium data indicated the existence of two classes of binding sites with dissociation constants (Kd) of 56 pmol and 1.92 nM, and corresponding binding capacities (Bmax) of 6.6 fmol/mg and 11.4 fmol/mg of membrane protein. Analogues and fragments of neurotensin competed for 125I-Trp11-neurotensin binding with a rank order of potency similar to that previously reported for their contracting effect in rat fundus strips. Na+ decreased in a concentration dependent manner the binding of labelled ligand to the high affinity site. At 100 mM, Na+ induced a 6-fold increase in the IC50 of neurotensin for inhibition of 125I-Trp11-neurotensin binding. At this concentration of Na+, the IC50 for neurotensin was 1 nM, a value close to the Kd of the low affinity site.  相似文献   
56.
Summary In the mouse, nerves were located throughout the trachea and extrapulmonary bronchi in both the smooth muscle and the connective tissue. However, no nerves were found within the epithelium. In the smooth muscle there were large numbers of nonmyelinated nerves. These were usually en passant elements but varicosities containing small mitochondria and vesicles were also seen; these axons sometimes appeared to be efferent to the muscle.Unilateral cervical vagotomy reduced the numbers of nerves in the muscle of the trachea and ipsilateral primary bronchus, suggesting that they were afferent. The intramuscular nerves were characterized in terms of their complement of cytoplasmic organelles; in particular nerves containing many mitochondria disappeared following vagotomy.Pretreatment of mice with 5-hydroxydopamine to accentuate the electron-opacity of catecholamine-containing granules resulted in 3.5% of the nerves within tracheal muscle showing such granules.The afferent nerves of the smooth muscle may be complex branching structures with many varicosities. The absence of epithelial nerves may be related to the absence of the cough reflex in the mouse.  相似文献   
57.
Summary The removal of Na from the medium causes a cellular Ca uptake in the smooth muscle of the guinea pig taenia coli which is rapidly reversed if medium Na is readmitted. This net extrusion was characterized in tissues which were first Na-depleted in a zero-Na (sucrose) solution. Li was able to substitute for Na in mediating this effect. K was also able to mimic Na in this respect if the depolarization-mediated Ca influx caused by the isotonic K solution was blocked with 10–5 m D-600. The net Ca extrusion upon Na readmission was due to a small decrease in Ca influx, as well as a marked increase in the transmembrane Ca efflux rate, as revealed by45Ca washout experiments. The increased45Ca efflux upon Na readmission could be mimicked by Li, K, choline and tris. We conclude that the Na/Ca-exchange hypothesis is insufficient to explain these data, in that both Ca extrusion and45Ca efflux can be stimulated in the absence of a Na gradient, or in the absence of any monovalent cationic gradient. These observations are discussed in terms of a possible intracellular competition of Ca and monovalent cations for anionic binding sites, as well as with regard to a possible direct stimulation of a plasmalemmal CaATPase by monovalent cations.  相似文献   
58.
This report demonstrates that the commonly used anesthetic agent, pentobarbital sodium, in concentrations of 1 · 10?4 to 2 · 10?3 M inhibits calcium (Ca2+) uptake in both rat aortic and portal venous smooth muscle. The data indicate that total exchangeable Ca2+ in portal vein is reduced by about 15% in 1 · 10?4 M pentobarbital sodium, while the intracellular exchangeable Ca2+ is reduced by 24%. On the other hand, in aortic smooth muscle, while 5–20 · 10?4 M pentobarbital sodium reduces total exchangeable Ca2+ by about 15%, intracellular Ca2+ is reduced by 22% in 5 · 10?4 M pentobarbital sodium and by 38% in 2 · 10?3 M pentobarbital sodium. The present studies thus reveal that concentrations of pentobarbital sodium known to be present during induction of surgical anesthesia can exert significant inhibitory effects on exchangeability and transmembrane movement of Ca2+ in at least two different types of blood vessels.  相似文献   
59.
The association between enzymatic and electrochemical reactions, enzymatic electrocatalysis, had proven to be a very powerful tooth in both analytical and synthetic fields. However, most of the combinations studied have involved enzymatic catalysis of irreversible or quasi-irreversible reaction. In the present work, we have investigated the possibility of applying enzymatic electrocatalysis to a case where the electrochemical reaction drives a thermodynamically unfavorable reversible reaction. Such thermodynamically unfavorable reactions include most of the oxidations catalyzed by dehydrogenases. Yeast alcohol dehydrogenase (E.C. 1.1.1.1) was chosen as a model enzyme because the oxidation of ethanol is thermodynamically very unfavorable and because its kinetics are well known. The electrochemical reaction was the oxidation of NADH which is particularly attractive as a method of cofactor regeneration. Both the electrochemical and enzymatic reactions occur in the same batch reactor in such a way that electrical energy is the only external driving force. Two cases were experimentally and theoretically developed with the enzyme either in solution or immobilized onto the electrode's surface. In both cases, the electrochemical reaction could drive the enzymatic reaction by NADH consumption in solution or directly in the enzyme's microenvironment. However even for a high efficiency of NADH consumption, the rate of enzymatic catalysis was limited by product (acetaldedehyde) inhibition. Extending this observation to the subject of organic synthesis catalyzed by dehydrogenases, we concluded that thermodynamically unfavorable reaction and can only be used in a process if efficient NAD regeneration and product elimination are simultaneously carried out within the reactor.  相似文献   
60.
Bacillus polymyxa ferments glucose to 1-2,3 butanediol, acetoin, ethanol, acetic acid, lactic acid, and formic acid. This research investigates product formation as a function of oxygen availability. A predictive model that simulates product distribution at known oxygen transfer rates is developed on the hypothesis that, in an energy-limited environment, B. polymyxa utilizes glucose and oxygen in the most efficient manner. The efficiency of utilization of glucose and oxygen is measured in terms of the ATP yields of each oxidative pathway. The identity of the products constituting the profile at the given oxygen transfer rate is determined by comparing the ATP production and consumption rates. While the ATP generated is calculated from a knowledge of the oxygen transfer rate and ATP yields of the oxidative pathways, the ATP consumption is estimated by the Pirt expression in terms of growth- and nongrowth-associated components. The product formation rates are obtained by solving ATP and NAD balance equations. They equate the production and consumption rates of these intermediates and are derived from the pseudo-steady-state hypothesis. The model is applied to continuous culture systems that are both open and closed with respect to biomass. At a given oxygen transfer rate, dilution rate, and inlet glucose concentration, the model predicts steady-state concentrations of two dominant fermentation endproducts with the help of four parameters that can be determined from independent experiments. In contrast with earlier approaches, the experimental studies are carried out in continuous culture. Product profiles are obtained at various oxygen transfer rates, fer rates, inlet glucose concentrations, and dilution rates. The effect of pH on the relative distribution of products is also demonstrated. Results indicate that the model is fairly successful in predicting product profiles as a function of oxygen availability. (c) 1992 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号