首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14519篇
  免费   820篇
  国内免费   708篇
  16047篇
  2024年   22篇
  2023年   265篇
  2022年   421篇
  2021年   543篇
  2020年   477篇
  2019年   697篇
  2018年   534篇
  2017年   338篇
  2016年   369篇
  2015年   502篇
  2014年   1036篇
  2013年   1116篇
  2012年   771篇
  2011年   934篇
  2010年   787篇
  2009年   647篇
  2008年   797篇
  2007年   736篇
  2006年   573篇
  2005年   548篇
  2004年   506篇
  2003年   390篇
  2002年   344篇
  2001年   181篇
  2000年   175篇
  1999年   186篇
  1998年   165篇
  1997年   142篇
  1996年   153篇
  1995年   163篇
  1994年   149篇
  1993年   99篇
  1992年   126篇
  1991年   89篇
  1990年   95篇
  1989年   82篇
  1988年   58篇
  1987年   56篇
  1986年   58篇
  1985年   80篇
  1984年   101篇
  1983年   91篇
  1982年   95篇
  1981年   53篇
  1980年   65篇
  1979年   55篇
  1978年   38篇
  1977年   36篇
  1976年   24篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3.  相似文献   
102.
103.
104.
105.
We report a detailed all-atom simulation of the folding of the GCAA RNA tetraloop. The GCAA tetraloop motif is a very common and thermodynamically stable secondary structure in natural RNAs. We use our simulation methods to study the folding behavior of a 12-base GCAA tetraloop structure with a four-base helix adjacent to the tetraloop proper. We implement an all-atom Monte Carlo (MC) simulation of RNA structural dynamics using a Go potential. Molecular dynamics (MD) simulation of RNA and protein has realistic energetics and sterics, but is extremely expensive in terms of computational time. By coarsely treating non-covalent energetics, but retaining all-atom sterics and entropic effects, all-atom MC techniques are a useful method for the study of protein and now RNA. We observe a sharp folding transition for this structure, and in simulations at room temperature the state histogram shows three distinct minima: an unfolded state (U), a more narrow intermediated state (I), and a narrow folded state (F). The intermediate consists primarily of structures with the GCAA loop and some helix hydrogen bonds formed. Repeated kinetic folding simulations reveal that the number of helix base-pairs forms a simple 1D reaction coordinate for the I-->N transition.  相似文献   
106.
107.
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host''s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.  相似文献   
108.
109.
110.
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next‐generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single‐nucleotide polymorphisms detected using RNA‐seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号