首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   53篇
  国内免费   63篇
  2023年   11篇
  2022年   15篇
  2021年   29篇
  2020年   29篇
  2019年   20篇
  2018年   24篇
  2017年   22篇
  2016年   22篇
  2015年   31篇
  2014年   83篇
  2013年   132篇
  2012年   94篇
  2011年   64篇
  2010年   45篇
  2009年   44篇
  2008年   50篇
  2007年   47篇
  2006年   27篇
  2005年   20篇
  2004年   14篇
  2003年   21篇
  2002年   23篇
  2001年   14篇
  2000年   6篇
  1999年   12篇
  1998年   9篇
  1997年   12篇
  1996年   12篇
  1995年   11篇
  1994年   11篇
  1993年   10篇
  1992年   10篇
  1991年   10篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1971年   4篇
  1970年   2篇
  1969年   1篇
  1953年   1篇
排序方式: 共有1044条查询结果,搜索用时 31 毫秒
91.
To survive in immune-competent hosts, the pathogen Staphylococcus aureus expresses and secretes a sophisticated array of proteins that inhibit the complement system. Among these are the staphylococcal complement inhibitors (SCIN), which are composed of three active proteins (SCIN-A, -B, and -C) and one purportedly inactive member (SCIN-D or ORF-D). Because previous work has focused almost exclusively on SCIN-A, we sought to provide initial structure/function information on additional SCIN proteins. To this end we determined crystal structures of an active, N-terminal truncation mutant of SCIN-B (denoted SCIN-B18–85) both free and bound to the C3c fragment of complement component C3 at 1.5 and 3.4 Å resolution, respectively. Comparison of the C3c/SCIN-B18–85 structure with that of C3c/SCIN-A revealed that both proteins target the same functional hotspot on the C3b/C3c surface yet harbor diversity in both the type of residues and interactions formed at their C3b/C3c interfaces. Most importantly, these structures allowed identification of Arg44 and Tyr51 as residues key for SCIN-B binding to C3b and subsequent inhibition of the AP C3 convertase. In addition, we also solved several crystal structures of SCIN-D to 1.3 Å limiting resolution. This revealed an unexpected structural deviation in the N-terminal α helix relative to SCIN-A and SCIN-B. Comparative analysis of both electrostatic potentials and surface complementarity suggest a physical explanation for the inability of SCIN-D to bind C3b/C3c. Together, these studies provide a more thorough understanding of immune evasion by S. aureus and enhance potential use of SCIN proteins as templates for design of complement targeted therapeutics.  相似文献   
92.
Dietary salt intake controls epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in the distal nephron by affecting status of the renin-angiotensin-aldosterone system (RAAS). Whereas regulation of ENaC by aldosterone is generally accepted, little is known about whether other components of RAAS, such as angiotensin II (Ang II), have nonredundant to aldosterone-stimulatory actions on ENaC. We combined patch clamp electrophysiology and immunohistochemistry in freshly isolated split-opened distal nephrons of mice to determine the mechanism and molecular signaling pathway of Ang II regulation of ENaC. We found that Ang II acutely increases ENaC Po, whereas prolonged exposure to Ang II also induces translocation of α-ENaC toward the apical membrane in situ. Ang II actions on ENaC Po persist in the presence of saturated mineralocorticoid status. Moreover, aldosterone fails to stimulate ENaC acutely, suggesting that Ang II and aldosterone have different time frames of ENaC activation. AT1 but not AT2 receptors mediate Ang II actions on ENaC. Unlike its effect in vasculature, Ang II did not increase [Ca2+]i in split-opened distal nephrons as demonstrated using ratiometric Fura-2-based microscopy. However, application of Ang II to mpkCCDc14 cells resulted in generation of reactive oxygen species, as probed with fluorescent methods. Consistently, inhibiting NADPH oxidase with apocynin abolished Ang II-mediated increases in ENaC Po in murine distal nephron. Therefore, we concluded that Ang II directly regulates ENaC activity in the distal nephron, and this effect complements regulation of ENaC by aldosterone. We propose that stimulation of AT1 receptors with subsequent activation of NADPH oxidase signaling pathway mediates Ang II actions on ENaC.  相似文献   
93.
The bacterial phosphotransferase system (PTS) is a signal transduction pathway that couples phosphoryl transfer to active sugar transport across the cell membrane. The PTS is initiated by the binding of phosphoenolpyruvate (PEP) to the C-terminal domain (EIC) of enzyme I (EI), a highly conserved protein that is common to all sugar branches of the PTS. EIC exists in a dynamic monomer/dimer equilibrium that is modulated by ligand binding and is thought to regulate the overall PTS. Isolation of EIC has proven challenging, and conformational dynamics within the EIC domain during the catalytic cycle are still largely unknown. Here, we present a robust protocol for expression and purification of recombinant EIC from Escherichia coli and show that isolated EIC is capable of hydrolyzing PEP. NMR analysis and residual dipolar coupling measurements indicate that the isolated EIC domain in solution adopts a stable tertiary fold and quaternary structure that is consistent with previously reported crystallographic data. NMR relaxation dispersion measurements indicate that residues around the PEP binding site and in the β3α3 turn (residues 333-366), which is located at the dimer interface, undergo a rapid transition on the sub-millisecond time scale (with an exchange rate constant of ~1500 s(-1)) between major open (~97%) and minor closed (~3%) conformations. Upon PEP binding, the β3α3 turn is effectively locked in the closed state by the formation of salt bridges between the phosphate group of PEP and the side chains of Lys(340) and Arg(358), thereby stabilizing the dimer.  相似文献   
94.
Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.  相似文献   
95.
The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ∼70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg582 in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg638 compromises SDH function only when present in combination with a Cys630 substitution. Mutations of either Arg582 or Arg638/Cys630 do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.  相似文献   
96.
Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs.  相似文献   
97.
We use data from the National Incident-Based Reporting System to examine the effects of offender and victim age on whether male offenders commit sexual assault while robbing women. Restricting analyses to robberies reveals the offenders' age preferences since it allows one to control for the effects of opportunity. We find that robbers of all ages are most likely to sexually assault women at ages 15-29 years, ages when their reproductive potential is highest. However, in contrast to the idea that rape is a direct adaptation, victims are no more likely to be raped than sexually assaulted at these ages. The age of the offender is also a strong predictor of sexual assault. The likelihood that a robber commits a sexual assault increases from age 12 years until he reaches his early thirties when it begins to decline. This age pattern corresponds, to some extent, to age differences in the male sex drive.  相似文献   
98.
政府使用公共财政投资建设公益性的工程,需遵守一定的审批与管理流程。由于缺少园林工程投资估算指标体系,以及园林工程特有的艺术性,使审批流程与设计流程产生了一些矛盾。审批过程中,评审者关注投资的合理性,设计者关注园林美学观感,两者的不同立场导致对部分园林绿地建设内容必要性的分歧。为了在保证建设资金投入合理性前提下最大限度地实现园林绿地的完整功能与艺术水平,对有关的问题进行梳理,提出平衡设计与评审的原则,并强调在审批与建设过程中各方面调整思维方式,进行换位思考的必要性。  相似文献   
99.
目的:研究中枢神经系统血管母细胞瘤(VHL)基因突变的主要类型和发生情况,探讨VHL疾病发生的原因、临床特点等。方法:以基因组DNA为模板,PCR扩增VHL基因3个外显子及5’UTR区域,结合DNA直接测序的方法,对一个有多个小脑血管母细胞瘤患者的家系进行VHL基因突变检测。结果:发现该家系VHL基因5’UTR区、外显子1和外显子2正常,外显子3存在c.499C>G的改变,为一个错意突变,氨基酸改变为Arg-Gln(p.R167Q),该突变是导致这个家系的患者发病的直接原因。结论:VHL疾病的突变主要集中在VHL蛋白的α、β结构域,位于α结构域的p.R167Q突变为该VHL家系致病的主要原因。  相似文献   
100.
Abstract: White-tailed deer (Odocoileus virginianus) are important game mammals and potential reservoirs of diseases of domestic livestock; thus, diseases of deer are of great concern to wildlife managers. Contact, either direct or indirect, is necessary for disease transmission, but we know little about the ecological contexts that promote intrasexual contact among deer. Using pair-wise direct contacts estimated from Global Positioning System collar locations and joint utilization distributions (JUDs), we assessed habitats in which contacts occur to test whether direct contact rates among female white-tailed deer in different social groups differs among land-cover types. We also tested whether contact rates differed among seasons, lunar phases, and times of day. We obtained locations from 27 female deer for periods of 0.5–17 months during 2002–2006. We designated any simultaneous pair of locations for 2 deer <25 m apart as a direct contact. For each season, we used compositional analysis to compare land-cover types where 2 deer had contact to available land-cover weighted by their JUD. We used mixed-model logistic regression to test for effects of season, lunar phase, and time of day on contact rates. Contact rates during the gestation season were greater than expected from random use in forest and grassland cover, whereas contact rates during the fawning period were greater in agricultural fields than in other land-cover types. Contact rates were greatest during the rut and lowest in summer. Diel patterns of contact rates varied with season, and contact rates were elevated during full moon compared to other lunar periods. Both spatial and temporal analyses suggest that contact between female deer in different social groups occurs mainly during feeding, which highlights the potential impact of food distribution and habitat on contact rates among deer. By using methods to associate contacts and land-cover, we have created beneficial tools for more elaborate and detailed studies of disease transmission. Our methods can offer information necessary to develop spatially realistic models of disease transmission in deer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号