排序方式: 共有188条查询结果,搜索用时 0 毫秒
91.
Knowledge of the detailed organization of nucleosomes across genomes and the mechanisms of nucleosome positioning is critical for the understanding of gene regulation and expression. In the present work, the bias of 4-mer frequency in nucleosome and linker sequences of the S. cerevisiae genome was analyzed statistically. A novel position-correlation scoring function algorithm based on the bias of 4-mer frequency in linker sequences was presented to distinguish nucleosome vs linker sequences. Five-fold cross-validation demonstrated that the algorithm achieved a good performance with mean area under the receiver operator characteristics curve of 0.981. Next, the algorithm was used to predict nucleosome occupancy throughout the S. cerevisiae genome and relatively high correlation coefficients with experiment maps of nucleosome positioning were obtained. Besides, the distinct nucleosome depleted regions in the vicinity of regulatory sites were confirmed. The results suggest that intrinsic DNA sequence preferences in linker regions have a significant impact on the nucleosome occupancy. 相似文献
92.
93.
94.
95.
96.
Leah H. Matzat Elissa P. Lei 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2014,1839(3):203-214
The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development. 相似文献
97.
98.
Gene expression profile upon endoplasmic reticulum (ER) stress was analyzed by deep shotgun sequencing of mRNAs (DSSR) using RNAs from polysomes or cytoplasm of the HT29 cell. Two time points, 4h after tunicamycin treatment when IRE1α signaling pathway is active and 16h after the treatment when it is inactive, were used. There was a transient decrease in the proportion of shorter mRNA species (<1000bp) in polysome, while it increased transiently in the cytoplasm. Despite such an overall change and decrease in total amount of polysomes, the majority of the 6966 genes analyzed had less than 2 fold change in their expressions. We searched for the genes whose expression was elevated by 2 folds or more in both polysome and cytoplasm and confirmed the results with RT-PCR. There were 7 genes elevated only at 4h (Group I), 20 genes only at 16h (Group II) and 7 genes both at 4 and 16h (Group III). There were 3 genes involved in ribosomal RNA biogenesis in Group I and 2 genes involved mTOR control in Group III. This was consistent with the concept that the ribosome is the essential site for managing ER stress. DSSR is a useful tool for the search of candidates of ER stress responsive genes. 相似文献
99.
100.