首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24809篇
  免费   951篇
  国内免费   705篇
  26465篇
  2024年   145篇
  2023年   427篇
  2022年   592篇
  2021年   698篇
  2020年   776篇
  2019年   966篇
  2018年   780篇
  2017年   547篇
  2016年   521篇
  2015年   641篇
  2014年   1300篇
  2013年   1735篇
  2012年   972篇
  2011年   1388篇
  2010年   914篇
  2009年   1099篇
  2008年   1133篇
  2007年   1164篇
  2006年   998篇
  2005年   920篇
  2004年   821篇
  2003年   681篇
  2002年   580篇
  2001年   407篇
  2000年   341篇
  1999年   376篇
  1998年   340篇
  1997年   288篇
  1996年   295篇
  1995年   297篇
  1994年   227篇
  1993年   204篇
  1992年   196篇
  1991年   189篇
  1990年   159篇
  1989年   144篇
  1988年   151篇
  1987年   151篇
  1986年   141篇
  1985年   238篇
  1984年   320篇
  1983年   252篇
  1982年   298篇
  1981年   241篇
  1980年   261篇
  1979年   231篇
  1978年   205篇
  1977年   167篇
  1976年   137篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
992.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   
993.
994.
Diabetic nephropathy (DN) is among the common complications of diabetes and is a major cause of end-stage kidney disease. Emerging data indicate that renal inflammation is involved in DN progression and aggravation. Still, the exact cellular mechanisms remain unclear. Dysregulated expression of microRNAs (miRNAs) is associated with multiple diseases, including DN. The relationship between miRNAs and inflammation in DN is also unexplored. Here, we evaluated the role of miR-485 in mediating the response of human mesangial cells (HMCs) to a high glucose (HG) concentration, and the potential underlying mechanism. We found that miR-485 expression is significantly decreased in HG-stimulated HMCs. Overexpression of miR-485 suppressed HG-induced proliferation of HMCs. Lower production of proinflammatory cytokines (i.e., TNF-α, IL-1β, and IL-6) was observed in miR-485–overexpressing HMCs. Overexpression of miR-485 markedly suppressed the overexpression of extracellular-matrix proteins, e.g., collagen IV (Col IV) and fibronectin (FN), in HG-stimulated HMCs. Furthermore, miR-485 suppressed the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5), restrained the HG-induced HMC proliferation, downregulated the expression of proinflammatory cytokines, and inhibited the production of extracellular-matrix proteins in HMCs. These results provide new insights into the involvement of the miR-485–NOX5 signaling pathway in DN progression.  相似文献   
995.
996.
The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be responsible for severe symptoms such as ichtyosis, mental retardation, and spasticity. Here we present a novel approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the culture medium of living cells using HPLC separation and fluorescence detection. Our results show that in fibroblasts from SLS patients, fatty aldehyde is not accumulating but is converted readily into fatty alcohol. In control cells, in contrast, exclusively the corresponding fatty acid is formed. SLS patient cells did not display a hypersensitivity toward hexadecanal or hexadecanol, but 3-fold lower concentrations of the fatty alcohol than the corresponding fatty aldehyde were needed to induce toxicity in SLS patient and in control cells.  相似文献   
997.
Cholesterol depletion alters the apparent affinity of the internal cationic sites and the maximal translocation rate but not the affinity of the external cationic sites of the Na+?K+ pump in human erythrocytes. To test whether these effects were mediated by a direct cholesterol-internal site interaction or by a change in membrane lipid order, the effects of five fluidizing amphiphiles (chlorpromazine, imipramine, benzyl alcohol, sodium oleate and sodium benzenesulphonate) on the kinetic parameters of the Na+?K+ pump were determined. The cholesterol removal and all the agents used induced dose-response decreases in membrane lipid order as measured by fluorescence polarization or ESR. Positive and neutral amphiphiles mimicked the effects of cholesterol removal on the affinity of the internal sites of the pump and to a lesser extent on the maximal translocation rate. Anionic amphiphiles had no effect on internal sites, probably because they distributed preferentially within the outer leaflet on the membrane. These results indicate that cholesterol controls the affinity of the internal sites of the Na+?K+ pump by altering the membrane lipid order. In contrast, neither cholesterol depletion nor the agents used altered the affinity of the external sites of the Na+?K+ pump. This difference in sensitivity to membrane lipid order suggests that internal and external cationic sites, although borne by the same protein, are in different lipid environments.  相似文献   
998.
Su V  Hsu BD 《Biotechnology letters》2003,25(22):1933-1939
Anthocyanins are responsible for reds through blues in flowers. Blue and violet flowers generally contain derivatives of delphinidin, whereas red and pink flowers contain derivatives of cyanidin or pelargonidin. Differences in hydroxylation patterns of these three major classes of anthocyanidins are controlled by the cytochrome P450 enzymes. Flavonoid-3',5'-hydroxylase, a member of the cytochrome P450 family, is the key enzyme in the synthesis of 3',5'-hydroxylated anthocyanins, generally required for blue or purple flowers. Here we report on the isolation of a cDNA clone of a putative flavonoid-3',5'-hydroxylase gene from Phalaenopsis that was then cloned into a plant expression vector. Transient transformation was achieved by particle bombardment of Phalaenopsis petals. The transgenic petals changed from pink to magenta, indicating that the product of the putative flavonoid-3',5'-hydroxylase gene influences anthocyanin pigment synthesis.  相似文献   
999.
Neurodegeneration causes dysfunction and degeneration of neurons and is triggered by various factors including genetic defects, free radicals, injury, and glutamate excitotoxicity. Among those, glutamate excitotoxicity is implicated in chronic disorders including AD and ALS, and in acute insults in the CNS including traumatic brain injury. Neurological disorders show hallmark morphological abnormalities such as axon degeneration and cell body death. The molecular mechanisms underlying excitotoxicity-induced neurodegeneration are complex and deciphering a molecular mechanism from one angle is beneficial to understand the process, however, still difficult to develop strategies to suppress excitotoxicity-induced degeneration due to existence of other mechanisms. Thus, directly identifying compounds that can modulate excitotoxicity-induced neurodegeneration and subsequently clarifiying the molecular mechanism is a valid approach to develop effective strategies to suppress neurodegeneration. We searched for compounds that can suppress excitotoxicity-induced neurodegeneration and found that CP-31398, a known compound that can rescue the structure and function of the tumor suppressor protein p53 mutant form and stabilize the active conformation of the p53 wild-type form, suppresses excitotoxicity-induced axon degeneration and cell body death. Moreover, CP-31398 suppresses mitochondrial dysfunction which has a strong correlation with excitotoxicity. Thus, our findings identify a compound that can serve as a novel modulator of neurodegeneration induced by glutamate excitotoxicity.  相似文献   
1000.
The role of serine/threonine protein phosphatase 5 (PP5) in the development of obesity and insulin resistance associated with high-fat diet-feeding (HFD) was examined using PP5-deficient mice (Ppp5c−/−). Despite similar caloric intake, Ppp5c−/− mice on HFD gained markedly less weight and did not accumulate visceral fat compared to wild-type littermates (Ppp5c+/+). On a control diet, Ppp5c−/− mice had markedly improved glucose control compared to Ppp5c+/+ mice, an effect diminished by HFD. However, even after 10 weeks of HFD glucose control in Ppp5c−/− mice was similar to that observed in Ppp5c+/+ mice on the control diet. Thus, PP5 deficiency confers protection against HFD-induced weight gain in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号