首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22904篇
  免费   1353篇
  国内免费   798篇
  2023年   348篇
  2022年   510篇
  2021年   625篇
  2020年   651篇
  2019年   882篇
  2018年   902篇
  2017年   567篇
  2016年   564篇
  2015年   668篇
  2014年   1411篇
  2013年   1788篇
  2012年   1051篇
  2011年   1425篇
  2010年   1005篇
  2009年   1086篇
  2008年   1106篇
  2007年   1130篇
  2006年   968篇
  2005年   852篇
  2004年   724篇
  2003年   637篇
  2002年   525篇
  2001年   338篇
  2000年   316篇
  1999年   315篇
  1998年   279篇
  1997年   235篇
  1996年   234篇
  1995年   205篇
  1994年   198篇
  1993年   198篇
  1992年   169篇
  1991年   161篇
  1990年   133篇
  1989年   114篇
  1988年   99篇
  1987年   92篇
  1986年   92篇
  1985年   189篇
  1984年   361篇
  1983年   295篇
  1982年   283篇
  1981年   215篇
  1980年   189篇
  1979年   163篇
  1978年   133篇
  1977年   134篇
  1976年   122篇
  1975年   101篇
  1973年   105篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
41.
《Molecular cell》2020,77(6):1176-1192.e16
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   
42.
Therapeutic use of stem cells Here the hematopoetic system of blood‐ and immune cell renewal is reviewed. Curing of chronic leucemias and malignant lymphomas is the most successful stem cell based therapy up to date. However, mismatches of histocompatibility‐complexes (HLA‐types) between receiver and donor set narrow limits to such therapies. Whether other diseases such as Parkinson could be cured by infusion of stem cells is still in question.  相似文献   
43.
44.
We investigated the synthesis and translocation of amino compounds in Parasponia, a genus of the Ulmaceae that represents the only non-legumes known to form a root nodule symbiosis with rhizohia. In the xylem sap of P. andersonii we identified asparagine. aspartate. glutamine, glutamated significant quantities of a non-protein amino acid. 4-methylglutamte(2-amino-4-methylpentanedioic acid). This identification was confirmed by two methods, capillary gas chromatography (GC) electron ionization (El) mass spectrometry (MS) and reverse phase high pressure liquid chromatography (HPLC) analysis of derivatized compounds. In leaf, root and nodule samples from P. andersonii and P. parviflora we also identified the related compounds 4-methyleneglutamate and 4-methyleneglulamine. Using 15N2 labelling and GC-Ms analysis of root nodule extracts we followed N2 fixation and ammonia assimilation in P. andersonii root nodules and observed Label initially in glutamine and subsequently in glutamate, suggesting operation of the glutamine synthetase/glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) pathway. Importantly, we observed the incorporation of significant quantities of 15N into 4-methylglutamate in nodules, demonstrating the de nova synthesis of this non protein amino acid and suggesting a role in the translation of N in symbioticParasponia.  相似文献   
45.
  1. Download : Download high-res image (88KB)
  2. Download : Download full-size image
  相似文献   
46.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   
47.
《Process Biochemistry》2014,49(5):882-889
The VP4 protein of infectious bursal disease virus (IBDV) is a serine protease that processes the polyprotein for viral assembly. VP4 has been found to associate primarily with type II IBDV tubules that are 24 nm in diameter. In this study, a chimeric VP4, assigned as HS1VP4, was constructed with a VP4-autocleavage site inserted between the N-terminal His-tag and the VP4 sequence. The results showed that the VP4 forms tubules after the self-cleavage of HS1VP4 when expressed in Escherichia coli. Furthermore, a deletion of 28 amino acids at the C-terminus of VP4 resulted in monomers and dimers instead of tubule formation; mutants of S652A and K692A at active site destroyed the activity. The endopeptidase activity of these monomers and dimers was approximately 12.5 times higher than that of VP4 tubules. Additionally, the formation of tubules inhibited VP4 protease activity, as demonstrated through in vitro assays. The production and characterization of monomers or dimers that have greater endopeptidase activity and protease activity than tubules can provide further insight into VP4 tubule assembly and the regulation of VP4 activity in host cells; this insight will facilitate the development of new anti-IBDV strategies.  相似文献   
48.
The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 using ionization chambers of 0.01 or 0.04 cm3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm2) for five brain SRT cases irradiated with dynamic conformal arcs.The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 were +0.48%, +0.56%, −0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were −0.35% (range, −0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively.The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm2.  相似文献   
49.
Gold catalysis is a convenient tool to oxidatively functionalize alkyne into a range of valuable compounds. In this article, we report a new access to isochroman-4-one and 2H-pyran-3(6H)-one derivatives that involves a gold-catalyzed oxidative cycloalkoxylation of an alkyne in the presence of a pyridine N-oxide. The reaction proceeds under mild conditions, is relatively efficient and exhibits a high functional group compatibility.  相似文献   
50.
Abstract

Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel’s ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号