首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71404篇
  免费   5066篇
  国内免费   3223篇
  79693篇
  2024年   168篇
  2023年   1117篇
  2022年   1828篇
  2021年   2342篇
  2020年   2193篇
  2019年   2466篇
  2018年   2461篇
  2017年   1767篇
  2016年   1746篇
  2015年   2256篇
  2014年   4252篇
  2013年   5300篇
  2012年   3192篇
  2011年   4307篇
  2010年   3314篇
  2009年   3683篇
  2008年   3754篇
  2007年   3822篇
  2006年   3403篇
  2005年   3040篇
  2004年   2702篇
  2003年   2270篇
  2002年   2028篇
  2001年   1395篇
  2000年   1179篇
  1999年   1220篇
  1998年   1122篇
  1997年   979篇
  1996年   923篇
  1995年   846篇
  1994年   768篇
  1993年   708篇
  1992年   611篇
  1991年   574篇
  1990年   446篇
  1989年   411篇
  1988年   375篇
  1987年   353篇
  1986年   315篇
  1985年   435篇
  1984年   620篇
  1983年   477篇
  1982年   517篇
  1981年   361篇
  1980年   361篇
  1979年   301篇
  1978年   221篇
  1977年   172篇
  1976年   144篇
  1975年   131篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
981.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   
982.
Conclusion  Membrane association is essential for GRK function and because of this the GRKs have evolved complex regulatory mechanisms for associating with the membrane. Although the GRKs are highly homologous, each kinase utilizes a distinct mechanism for associating with the membrane, which makes it unique within the family. Initially, the carboxyl terminus of the GRKs was identified as the “membrane association domain” but recent evidence suggests that the amino terminus may also play a critical role in localizing the kinases to the membrane (Murga et al., 1996; Pitcher et al, 1996). It is within these two domains that the GRKs are most variable at the amino acid level. The GRKS exhibit an absolute requirement for phospholipids not only for association with the membrane but also for activity. There are differences in preference and binding sites for the phospholipids within the GRK family, which may reflect differential targeting of the GRKs to G protein-coupled receptors situated in different lipid environments. There are hundreds of G protein-coupled receptors and only six known GRKs. All the GRKs appear to phosphorylate the same receptor substrates in vitro (Sterne-Marr & Benovic, 1995; Premont et al., 1995). Receptor specificity, in a cellular  相似文献   
983.
Major parts of amino-acid-coding regions of elongation factor (EF)-1α and EF-2 in Trichomonas tenax were amplified by PCR from total genomic DNA and the products were cloned into a plasmid vector, pGEM-T. The three clones from each of the products of the EF-1α and EF-2 were isolated and sequenced. The insert DNAs of the clones containing EF-1α coding regions were each 1,185 bp long with the same nucleotide sequence and contained 53.1% of G + C nucleotides. Those of the clones containing EF-2 coding regions had two different sequences; one was 2,283 bp long and the other was 2,286 bp long, and their G + C contents were 52.5 and 52.9%, respectively. The copy numbers of the EF-1α and EF-2 gene per chromosome were estimated as four and two, respectively. The deduced amino acid sequences obtained by the conceptual translation were 395 residues from EF-1α and 761 and 762 residues from the EF-2s. The sequences were aligned with the other eukaryotic and archaebacterial EF-1αs and EF-2s, respectively. The phylogenetic position of T. tenax was inferred by the maximum likelihood (ML) method using the EF-1α and EF-2 data sets. The EF-1α analysis suggested that three mitochondrion-lacking protozoa, Glugea plecoglossi, Giardia lamblia, and T. tenax, respectively, diverge in this order in the very early phase of eukaryotic evolution. The EF-2 analysis also supported the divergence of T. tenax to be immediately next to G. lamblia. Received: 15 February 1996 / Accepted: 28 June 1996  相似文献   
984.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   
985.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
986.
Abstract: The Pulsinelli-Brierley four-vessel occlusion model was used to study the consequences of hyperglycemic ischemia and reperfusion. Rats were subjected to either 30 min of normo- or hyperglycemic ischemia or 30 min of normo- or hyperglycemic ischemia followed by 60 min of reperfusion. In some animals, 2 mg/kg BN 50739, a platelet-activating factor receptor antagonist, was administered intraarterially either before or after the ischemic insult. The changes in mitochondrial membrane free fatty acid levels, phosphatidylcholine fatty acyl composition, and thiobarbituric acid-reactive material (TBAR) content plus the mitochondrial respiratory control ratio (RCR) were monitored. When the platelet-activating factor antagonist was present during normoglycemia, (a) the mitochondrial free fatty acid release both during and after ischemia was slowed, (b) reacylation of phosphatidylcholine following ischemia was promoted, and (c) TBAR accumulation during and following ischemia was decreased. The detrimental effects of hyperglycemia were muted when BN 50739 was present during ischemia. The RCR was preserved and phosphatidylcholine hydrolysis during ischemia was decreased. TBAR levels were consistently higher in hyperglycemic brain mitochondria both during and after ischemia. The RCR correlated directly with mitochondrial phosphatidylcholine polyunsaturated fatty acid content during ischemia and reperfusion. BN 50739 protection of mitochondrial membranes in brain may be influenced by tissue pH.  相似文献   
987.
Abstract: Oxygen radicals have been implicated in the neurodegenerative and other neurobiological effects evoked by methamphetamine (MA) in the brain. It has been reported that shortly after a single large subcutaneous dose of MA to the rat, the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) is formed in the cortex and hippocampus. This somewhat controversial finding suggests that MA potentiates formation of the hydroxyl radical (HO?) that oxidizes 5-hydroxytryptamine (5-HT) to 5,6-DHT, which, in turn, mediates the degeneration of serotonergic terminals. A major and more stable product of the in vitro HO?-mediated oxidation of 5-HT is 5-hydroxy-3-ethylamino-2-oxindole (5-HEO). In this investigation, a method based on HPLC with electrochemical detection (HPLC-EC) has been developed that permits measurement of very low levels of 5-HEO in rat brain tissue in the presence of biogenic amine neurotransmitters/metabolites. After intracerebroventricular administration into rat brain, 5-HEO is transformed into a single major, but unknown, metabolite that can be detected by HPLC-EC. One hour after administration of MA (100 mg/kg s.c.) to the rat, massive decrements of 5-HT were observed in all regions of the brain examined (cortex, hippocampus, medulla and pons, midbrain, and striatum). However, 5-HEO, its unidentified metabolite, or 5,6-DHT were not detected as in vivo metabolites of 5-HT. MA administration, in particular to rats pretreated with pargyline, resulted in the formation of low levels of N-acetyl-5-hydroxytryptamine (NAc-5-HT) in all brain regions examined. These results suggest that MA does not potentiate the HO?-mediated oxidation of 5-HT. Furthermore, the rapid MA-induced decrease of 5-HT might not only be related to oxidative deactivation of tryptophan hydroxylase, as demonstrated by other investigators, but also to the inhibition of tetrahydrobiopterin biosynthesis by NAc-5-HT. The massive decrements of 5-HT evoked by MA are accompanied by small or no corresponding increases in 5-hydroxyindole-3-acetic acid (5-HIAA) levels. This is due, in part, to the relatively rapid clearance of 5-HIAA from the brain and monoamine oxidase (MAO) inhibition by MA. However, the loss of 5-HT without corresponding increases in its metabolites point to other mechanisms that might deplete the neurotransmitter, such as oxidation by superoxide radical anion (O2??), a reaction that in vitro does not generate 5-HEO or 5,6-DHT but rather another putative neurotoxin, tryptamine-4,5-dione. One hour after administration, MA evokes large depletions of norepinephrine (NE) throughout the brain but somewhat smaller decrements of dopamine (DA) that are restricted to the nigrostriatal pathway. Furthermore, MA evokes a major shift in the metabolism of both NE and DA from the pathway mediated by MAO to that mediated by catechol-O-methyltransferase. The profound and widespread effects of MA on the noradrenergic system, but more anatomically localized influence on the dopaminergic system, suggests that NE in addition to DA, or unusual metabolites of these neurotransmitters, might play roles in the neurodegenerative effects evoked by this drug.  相似文献   
988.
Abstract: When primary cultures of cerebellar granule neurons are grown in a physiological concentration of KCl (5 m M ) they undergo apoptosis, which can be prevented by growing the cells in the presence of N -methyl- d -aspartate (NMDA). We now show that ethanol inhibits this trophic effect of NMDA, i.e., promotes apoptosis, and also inhibits the NMDA-induced increase in intracellular Ca2+ concentration in cells grown in 5 m M KCl. Both effects of ethanol show a similar concentration dependence and are reversed by a high concentration of glycine, the co-agonist at the NMDA receptor. The data suggest that the effect of ethanol on apoptosis is mediated, at least in part, by inhibition of NMDA receptor function. This effect of ethanol to increase apoptosis could contribute to the previously described in vivo sensitivity of the developing cerebellum to ethanol-induced damage.  相似文献   
989.
Abstract: The expression of high-molecular-weight (HMW) microtubule-associated protein-2 (MAP-2) expressing exon 8 (MAP-2+8) was examined by immunoblotting during rat brain development and in sections of human CNS. In rat brain, HMW MAP-2+8 expression was detected at embryonic day 21 and increased during postnatal development. In adult rats, HMW MAP-2+8 comigrated with MAP-2a. In human adult brain, HMW MAP-2+8 was expressed in select neuronal populations, including pyramidal neurons of layers III and V of the neocortex and parahippocampal cortex, pyramidal neurons in the endplate, CA2 and subiculum of the hippocampus, and the medium-sized neurons of the basal ganglia. In the cerebellum, a subpopulation of Golgi neurons in the internal granular cell layer and most Purkinje cells were also stained. In the spinal cord staining was observed in large neurons of the anterior horn. Staining was present in cell bodies and dendrites but not in axons. At the ultra-structural level, HMW MAP-2+8 immunoreactivity was observed on mitochondrial membranes and in postsynaptic densities (PSDs) of some asymmetric synapses in the midfrontal cortex and spinal cord. Immunoblots of proteins isolated from enriched mitochondrial and PSD fractions from adult human frontal lobe and rat brains confirmed the presence of HMW MAP-2+8. The presence of HMW MAP-2+8 in dendrites and in close proximity to PSDs supports a role in structural and functional attributes of select excitatory CNS synapses.  相似文献   
990.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号