首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1901篇
  免费   137篇
  国内免费   130篇
  2024年   3篇
  2023年   27篇
  2022年   28篇
  2021年   59篇
  2020年   74篇
  2019年   70篇
  2018年   81篇
  2017年   55篇
  2016年   49篇
  2015年   57篇
  2014年   125篇
  2013年   145篇
  2012年   70篇
  2011年   107篇
  2010年   85篇
  2009年   105篇
  2008年   121篇
  2007年   110篇
  2006年   92篇
  2005年   92篇
  2004年   61篇
  2003年   69篇
  2002年   58篇
  2001年   38篇
  2000年   36篇
  1999年   25篇
  1998年   29篇
  1997年   29篇
  1996年   32篇
  1995年   26篇
  1994年   40篇
  1993年   20篇
  1992年   26篇
  1991年   20篇
  1990年   11篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   4篇
  1972年   10篇
  1971年   4篇
排序方式: 共有2168条查询结果,搜索用时 15 毫秒
61.
62.
Cell migration is fundamental to many biological processes, including development, normal tissue remodeling, wound healing, and many pathologies. However, cell migration is a complex process, and understanding its regulation in health and disease requires the ability to manipulate and measure this process quantitatively under controlled conditions. This report describes a simple in vitro assay for quantitative analysis of cell migration in two-dimensional cultures that is an inexpensive alternative to the classic “scratch” assay. The method described utilizes flexible silicone masks fabricated in the lab according to the research demands of the specific experiment to create a cell-free area for cells to invade, followed by quantitative analysis based on widely available microscopic imaging tools. This experimental approach has the important advantage of visualizing cell migration in the absence of the cellular damage and disruption of the substrate that occurs when the “wound” is created in the scratch assay. This approach allows the researcher to study the intrinsic migratory characteristics of cells in the absence of potentially confounding contributions from cellular responses to injury and disruption of cell–substrate interactions. This assay has been used with vascular smooth muscle cells, fibroblasts, and epithelial cell types, but should be applicable to the study of practically any type of cultured cell. Furthermore, this method can be easily adapted for use with fluorescence microscopy, molecular biological, or pharmacological manipulations to explore the molecular mechanisms of cell migration, live cell imaging, fluorescence microscopy, and correlative immunolabeling.  相似文献   
63.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   
64.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
65.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
66.
During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes.  相似文献   
67.
Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.  相似文献   
68.
In this study, the variations of glycogen concentrations in Ruditapes decussatus from Sfax coasts (Tunisia) were described in relation to the reproductive cycle. Separate analyses were made of gonad, adductor muscle and ‘remainder’. The timing of gametogenic development and spawning was evaluated using qualitative histology associated with image analysis including (1) the estimation of the gonadal occupation index (GOI), (2) surface area occupied by reserve tissues and (3) variation in oocyte diameter. The reproductive cycle of R. decussatus exhibited partial asynchronization between sexes, the major difference being observed in the duration of the spawning period. Contrary to previous studies, we observed continuous partial spawning (e.g. 50% of ripe oocytes still subsisted at the partial spawning stage). During the gametogenic cycle, GOI varied significantly in males and in females. Most oocytes were ripe and ready to spawn when their diameter reached or exceeded 45?µm. The expansion of gonad was inversely proportional to the development of the foot tissue. Glycogen concentration showed significant temporal variations between tissues, indicating the clear differentiation in energy storage between the clam organs.  相似文献   
69.

Close‐up underwater photography and image analysis were used to quantify mesh occlusion by biofouling of salmon‐cage netting. This technique allows fast, non‐destructive sampling of cages in situ for the determination of temporal and spatial changes in fouling. The area of net blockage can be easily determined, allowing rapid evaluation of cleaning or antifouling performance.  相似文献   
70.
Bacterial biofilms adapt and shape their structure in response to varied environmental conditions. A statistical methodology was adopted in this study to empirically investigate the influence of nutrients on biofilm structural parameters deduced from confocal scanning laser microscope images of Paracoccus sp.W1b, a denitrifying bacterium. High concentrations of succinate, Mg++, Ca++, and Mn++ were shown to enhance biofilm formation whereas higher concentration of iron decreased biofilm formation. Biofilm formed at high succinate was uneven with high surface to biovolume ratio. Higher Mg++ or Ca++ concentrations induced cohesion of biofilm cells, but contrasting biofilm architectures were detected. Biofilm with subpopulation of pillar-like protruding cells was distributed on a mosaic form of monolayer cells in medium with 10 mM Mg++. 10 mM Ca++ induced a dense confluent biofilm. Denitrification activity was significantly increased in the Mg++- and Ca++-induced biofilms. Chelator treatment of various biofilm ages indicated that divalent cations are important in the initial stages of biofilm formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号