首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57132篇
  免费   3827篇
  国内免费   2553篇
  2024年   101篇
  2023年   959篇
  2022年   1340篇
  2021年   1872篇
  2020年   1791篇
  2019年   2354篇
  2018年   2019篇
  2017年   1380篇
  2016年   1507篇
  2015年   1911篇
  2014年   3118篇
  2013年   4099篇
  2012年   2234篇
  2011年   2963篇
  2010年   2119篇
  2009年   2524篇
  2008年   2552篇
  2007年   2662篇
  2006年   2393篇
  2005年   2267篇
  2004年   2046篇
  2003年   1736篇
  2002年   1678篇
  2001年   1384篇
  2000年   1131篇
  1999年   1092篇
  1998年   990篇
  1997年   912篇
  1996年   860篇
  1995年   870篇
  1994年   754篇
  1993年   711篇
  1992年   672篇
  1991年   629篇
  1990年   481篇
  1989年   482篇
  1988年   444篇
  1987年   372篇
  1986年   325篇
  1985年   437篇
  1984年   560篇
  1983年   329篇
  1982年   432篇
  1981年   405篇
  1980年   330篇
  1979年   293篇
  1978年   245篇
  1977年   186篇
  1976年   183篇
  1973年   95篇
排序方式: 共有10000条查询结果,搜索用时 47 毫秒
971.
野芹菜体细胞胚胎发生早期变化的细胞学研究   总被引:8,自引:0,他引:8  
通过光学与电子显微镜观察研究了野芹菜(Angelica polymorpha Maxim.)叶柄外植体胚性细胞的起源与原胚状体的发生。叶柄切段植入 MS 2mg/L2,4-D 0.25 mg/L KT固体培养基后,以DNA合成和细胞分裂为指标,判明了胚状体发生与紧贴维管束的鞘细胞层密切相关;鞘细胞通过有丝分裂形成多层结构的细胞群,它们仍含大液泡及薄层胞质,成片被覆在维管束表面;胚性细胞团即不同步地发生在该多层组织较内层的局部位点上,细胞具大核,胞质稠密,经持续有丝分裂发展成大小不同呈瘤状突起的原胚状体。伴随着鞘细胞的剧烈变化,韧皮部薄壁细胞亦分裂增殖,原有筛管变形衰退,部分新增殖的细胞分化为新筛分子;木质部中,原导管束附近朝向韧皮部一侧的部分薄壁细胞亦进一步分化为孔纹导管。外植体中维管系统的再次分化,显然是与输导功能强化以适应原胚状体发生时对营养物质的大量需求有关。  相似文献   
972.
Summary Pig epiblast cells that had been separated from other early embryonic cells were cultured in vitro. A three-step dissection protocol was used to isolate the epiblast from trophectoderm and primitive endoderm before culturing. Blastocysts collected at 7 to 8 days postestrus were immunodissected to obtain the inner cell mass (ICM) and destroy trophectodermal cells. The ICM was cultured for 2 to 3 days on STO feeder cells. The epiblast was then physically dissected free of associated primitive endoderm. Epiblast-derived cells, grown on STO feeders, produced colonies of small cells resembling mouse embryonic stem cells. This primary cell morphology changed as the colonies grew and evolved into three distinct colony types (endodermlike, neural rosette, or complex). Cell cultures derived from these three colony types spontaneously differentiated into numerous specialized cell types in STO co-culture. These included fibroblasts, endodermlike cells, neuronlike cells, pigmented cells, adipogenic cells, contracting muscle cells, dome-forming epithelium, ciliated epithelium, tubule-forming epithelium, and a round amoeboid cell type resembling a plasmacyte after Wright staining. The neuronlike cells, contracting muscle cells, and tubule-forming epithelium had normal karyotypes and displayed finite or undefined life spans upon long-term STO co-culture. The dome-forming epithelium had an indefinite life span in STO co-culture and also retained a normal karyotype. These results demonstrate the in vitro pluripotency of pig epiblast cells and indicate the epiblast can be a source for deriving various specialized cell cultures or cell lines.  相似文献   
973.
Summary Immunosurgery is a useful technique for the isolation of inner cell masses from murine blastocysts. Conventionally, rabbit antisera made ad hoc against murine splenic or fetal cells or fibroblasts have been used as antibody sources. We investigated the feasibility of using commercially available rabbit antiserum to murine erythrocytes (anti-RBC) and compared it with rabbit antiserum generated ad hoc to murine L-cells (anti-L-cell). Our results indicate that anti-RBC is at least as effective as anti-L-cell serum for the immunosurgical isolation of inner cell masses, which became either miniblastocysts (later forming outgrowths) or embryoid bodies (undergoing ectoderm-endodermlike differentiation within 48 h). Because anti-RBC is commercially available, the technical modification described herein increases the accessibility of the immunosurgical protocol for the isolation of murine inner cell masses.  相似文献   
974.
《Cytotherapy》2023,25(3):323-329
Background aimsThe most widely accepted starting materials for chimeric antigen receptor T-cell manufacture are autologous CD3+ T cells obtained via the process of leukapheresis, also known as T-cell harvest. As this treatment modality gains momentum and apheresis units struggle to meet demand for harvest slots, strategies to streamline this critical step are warranted.MethodsThis retrospective review of 262 T-cell harvests, with a control cohort of healthy donors, analyzed the parameters impacting CD3+ T-cell yield in adults with B-cell malignancies. The overall aim was to design a novel predictive algorithm to guide the required processed blood volume (PBV) (L) on the apheresis machine to achieve a specific CD3+ target yield.ResultsFactors associated with CD3+ T-cell yield on multivariate analysis included peripheral blood CD3+ count (natural log, ×109/L), hematocrit (HCT) and PBV with coefficients of 0.86 (95% confidence interval [CI], 0.80–0.92, P < 0.001), 1.30 (95% CI, 0.51–2.08, P = 0.001) and 0.09 (95% CI, 0.07–0.11, P < 0.001), respectively. The authors’ model, incorporating CD3+ cell count, HCT and PBV (L), with an adjusted R2 of 0.87 and root-mean-square error of 0.26 in the training dataset, was highly predictive of CD3+ cell yield in the testing dataset. An online application to estimate PBV using this algorithm can be accessed at https://cd3yield.shinyapps.io/cd3yield/.ConclusionsThe authors propose a transferrable model that incorporates clinical and laboratory variables accessible pre-harvest for use across the field of T-cell therapy. Pending further validation, such a model may be used to generate an individual leukapheresis plan and streamline the process of cell harvest, a well-recognized bottleneck in the industry.  相似文献   
975.
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master ‘clock of age’ (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial – specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.  相似文献   
976.
Mesenchymal-derived stromal or progenitor cells, commonly called “MSCs,” have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.  相似文献   
977.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
978.
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.  相似文献   
979.
We have isolated and characterized an antigen from normal human brain called p80, so called because it migrated with an Mr of 80 kDa on SDS PAGE. The Mr of 80 kDa consists of a protein of about 55-60 kDa and carbohydrate (20-25 kDa). The carbohydrate is almost entirely of the N-linked type, although a small amount of O-linked carbohydrate was detected. Cross-reactivity with monoclonal antibodies A3D8 and A1G3 showed that p80 could therefore be considered an isoform of the CD44 adhesion molecules. In addition, specific binding to hyaluronate which was not competed for by proteoglycan demonstrated that it involved different sites than the proteoglycan binding sites. We also observed that fucoidan and dextran sulphate increased the binding by 200-250% while chondroitin sulphate C also increased the binding but to a lesser extent. Heparin, heparan sulphate and chondroitin sulphates A and B did not have such an effect. The binding of p80 to hyaluronate was pH dependent with a maximum at pH 6.4. We concluded that p80 was an astrocyte specific adhesion molecule.  相似文献   
980.
N6-methyladenosine (m6A) is a dynamic and reversible RNA modification that has emerged as a crucial player in the life cycle of RNA, thus playing a pivotal role in various biological processes. In recent years, the potential involvement of RNA m6A modification in aging and age-related diseases has gained increasing attention, making it a promising target for understanding the molecular mechanisms underlying aging and developing new therapeutic strategies. This Perspective article will summarize the current advances in aging-related m6A regulation, highlighting the most significant findings and their implications for our understanding of cellular senescence and aging, and the potential for targeting RNA m6A regulation as a therapeutic strategy. We will also discuss the limitations and challenges in this field and provide insights into future research directions. By providing a comprehensive overview of the current state of the field, this Perspective article aims to facilitate further advances in our understanding of the molecular mechanisms underlying aging and to identify new therapeutic targets for aging-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号