首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   11篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   20篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   2篇
  1998年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
81.
Hsp104 solubilizes protein aggregates in cooperation with Hsp70/40. Although the framework of the disaggregase function has been elucidated, the actual process of aggregate solubilization by Hsp104-Hsp70/40 remains poorly understood. Here we developed several methods to investigate the functions of Hsp104 and Hsp70/40 from Saccharomyces cerevisiae, at single-molecule levels. The single-molecule methods, which provide the size distribution of the aggregates, revealed that Hsp70/40 prevented the formation of large aggregates from small aggregates and that the solubilization of the small aggregates required both Hsp104 and Hsp70/40. We directly visualized the individual association-dissociation dynamics of Hsp104 on immobilized aggregates and found that the lifetimes of the Hsp104-aggregate complex are divided into two groups: short (∼4 s) and long (∼30 s). Hsp70/40 stimulated the association of Hsp104 with aggregates and increased the duration of this association. The single-molecule data provide novel insights into the functional mechanism of the Hsp104 disaggregation machine.  相似文献   
82.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.  相似文献   
83.
84.
Myosin 1E is one of two "long-tailed" human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E co-localizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis.  相似文献   
85.
We have monitored single vesicles (granules) in bovine adrenal chromaffin cells using an optical sectioning technique, total internal reflection fluorescence microscopy (TIRFM). With TIR, fluorescence excitation is limited to an optical slice near a glass/water interface. In cells located at the interface, granules loaded with fluorescent dye can be visualized near to or docked at the plasma membrane. Here we give evidence that (1) TIRFM resolves single vesicles and (2) the fluorescence signal originates from vesicles of roughly 350 nm diameter, presumably large dense core vesicles (LDCVs). (3) Diffusional spread of released vesicle contents can be resolved and serves as a convenient criterion for a fusion event. (4) We give details on vesicle properties in resting cells, such as lateral mobility of chromaffin granules, number density, and frequency of spontaneous fusion or withdrawal into the cytoplasm. (5) Upon stimulation with high extracellular potassium, TIRFM reports depletion of the `visible pool' of vesicles closest to the plasma membrane within hundreds of milliseconds, consistent with previous concepts of a release-ready pool. We conclude that TIRFM constitutes an independent assay for pool depletion. TIRFM will allow us to study aspects of secretion that have previously been inaccessible in living cells, in particular the spatial relations and dynamics of vesicles prior to and during exocytosis and re-supply of the near-membrane pool of vesicles. Received: 26 June 1997 / Accepted: 26 September 1997  相似文献   
86.
Popp D  Gov NS  Iwasa M  Maéda Y 《Biopolymers》2008,89(9):711-721
The length distribution of cytoskeletal filaments is an important physical parameter, which can modulate physiological cell functions. In both eukaryotic and prokaryotic cells various biological cytoskeletal polymers form supramolecular structures due to short-range forces induced mainly by molecular crowding or cross linking proteins, but their in vivo length distribution remains difficult to measure. In general, based on experimental evidence and mathematical modeling of actin filaments in aqueous solutions, the steady state length distribution of fibrous proteins is believed to be exponential. We performed in vitro TIRF- and electron-microscopy to demonstrate that in the presence of short-range forces, which are an integral part of any living cell, the steady state length distributions of the eukaryotic cytoskeletal biopolymer actin, its prokaryotic homolog ParM and microtubule homolog FtsZ deviate from the classical exponential and are either double-exponential or Gaussian, as recent theoretical modeling predicts. Double exponential or Gaussian distributions opposed to exponential can change for example the visco-elastic properties of actin networks within the cell, influence cell motility by decreasing the amount of free ends at the leading edge of the cell or effect the assembly of FtsZ into the bacterial Z-ring thus modulating membrane constriction.  相似文献   
87.
Vasodilator-stimulated phosphoprotein (VASP) is a key regulator of dynamic actin structures like filopodia and lamellipodia, but its precise function in their formation is controversial. Using in vitro TIRF microscopy, we show for the first time that both human and Dictyostelium VASP are directly involved in accelerating filament elongation by delivering monomeric actin to the growing barbed end. In solution, DdVASP markedly accelerated actin filament elongation in a concentration-dependent manner but was inhibited by low concentrations of capping protein (CP). In striking contrast, VASP clustered on functionalized beads switched to processive filament elongation that became insensitive even to very high concentrations of CP. Supplemented with the in vivo analysis of VASP mutants and an EM structure of the protein, we propose a mechanism by which membrane-associated VASP oligomers use their WH2 domains to effect both the tethering of actin filaments and their processive elongation in sites of active actin assembly.  相似文献   
88.
The effects of ceramide incorporation in supported bilayers prepared from ternary lipid mixtures which have small nanoscale domains have been examined using atomic force and fluorescence microscopy. Both direct ceramide incorporation in vesicles used to prepare the supported bilayers and enzymatic hydrolysis of SM by sphingomyelinase were compared for membranes prepared from 5:5:1 DOPC/sphingomyelin/cholesterol mixtures. Both methods of ceramide incorporation resulted in enlargement of the initial small ordered domains. However, enzymatic ceramide generation led to a much more pronounced restructuring of the bilayer to give large clusters of domains with adjacent areas of a lower phase. The individual domains were heterogeneous with two distinct heights, the highest of which is assigned to a ceramide-rich phase which is hypothesized to occur via ceramide flip-flop to the lower leaflet with formation of a raised domain due to negative membrane curvature. A combination of AFM and fluorescence showed that the bilayer restructuring starts rapidly after enzyme addition, with formation of large clusters of domains at sites of high enzyme activity. The clustering of domains is accompanied by redistribution of fluid phase to the periphery of the domain clusters and there is a continued slow evolution of the bilayer over a period of an hour or more after the enzyme is removed. The relevance of the observed clustering of small nanoscale domains to the postulated coalescence of raft domains to form large signaling platforms is discussed.  相似文献   
89.
Cleavage of APP by BACE is the first proteolytic step in the production of Amyloid β (Aβ, which accumulates in senile plaques in Alzheimer’s disease. BACE-cleavage of APP is thought to happen in endosomes. However, there are controversial data whether APP and BACE can already interact on the cell surface dependent on the cholesterol level. To examine whether APP and BACE come into close proximity on the cell surface in living cells, we employed a novel technique by combining time-resolved Förster resonance energy transfer (FRET) measurements with total internal reflection microscopy (TIRET microscopy). Our data indicate that BACE and APP come into close proximity within the cell, but probably not on the cell surface. To analyze the impact of alterations in cholesterol level upon BACE-cleavage, we measured sAPP secretion. Alteration of APP processing and BACE proximity by cholesterol might be explained by alterations in cell membrane fluidity.  相似文献   
90.
The reggie/flotillin proteins oligomerize and associate into clusters which form scaffolds for membrane microdomains. Besides their localization at the plasma membrane, the reggies/flotillins reside at various intracellular compartments; however, the trafficking pathways used by reggie-1/flotillin-2 remain unclear. Here, we show that trafficking of reggie-1/flotillin-2 is BFA sensitive and that deletion mutants of reggie-1/flotillin-2 accumulate in the Golgi complex in HeLa, Jurkat and PC12 cells, suggesting Golgi-dependent trafficking of reggie-1/flotillin-2. Using total internal reflection fluorescence microscopy, we observed fast cycling of reggie-1/flotillin-2-positive vesicles at the plasma membrane, which engaged in transient interactions with the plasma membrane only. Reggie-1/flotillin-2 cycling was independent of clathrin, but was inhibited by cholesterol depletion and microtubule disruption. Cycling of reggie-1/flotillin-2 was negatively correlated with cell-cell contact formation but was stimulated by serum, epidermal growth factor and by cholesterol loading mediated by low density lipoproteins. However, reggie-1/flotillin-2 was neither involved in endocytosis of the epidermal growth factor itself nor in endocytosis of GPI-GFPs or the GPI-anchored cellular prion protein (PrP(c)). Reggie-2/flotillin-1 and stomatin-1 also exhibited cycling at the plasma membrane similar to reggie-1/flotillin-2, but these vesicles and microdomains only partially co-localized with reggie-2/flotillin-1. Thus, regulated vesicular cycling might be a general feature of SPFH protein-dependent trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号