首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
  2023年   3篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   12篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   11篇
  2009年   13篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有113条查询结果,搜索用时 125 毫秒
91.
JM4 is a four-transmembrane protein binding to the CCR5 receptor   总被引:1,自引:0,他引:1  
The CC chemokine receptor 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV) and CCR5 mutants lacking the carboxy (C)-terminus interfere with HIV infection. Therefore, we analysed the C-terminus of CCR5 and here describe Jena-Muenchen 4 (JM4), a novel CCR5-interacting protein. JM4 is membrane-associated, co-precipitates with CCR5, and is ubiquitously expressed. It shares about 62% sequence similarity with JWA and glutamate transporter-associated protein 3-18 (GTRAP3-18), a regulator of an amino acid transporter. JWA, like JM4, is a four-transmembrane protein, which binds to the CCR5 receptor. Furthermore, JM4, JWA, and GTRAP3-18 co-localise and heterodimerise indicating a functional relationship. JM4 co-localises with calnexin in the endoplasmic reticulum and with the mannose 6-phosphate receptor in the Golgi. JM4 and GTRAP3-18 harbor a Rab-acceptor motif, indicating a function in vesicle formation at the Golgi complex. In conclusion, we describe a CCR5-interacting protein, which is suggested to function in trafficking and membrane localisation of the receptor, possibly also other receptors or amino acid transporters.  相似文献   
92.
Zhou YB  Liu F  Zhu ZD  Zhu H  Zhang X  Wang ZQ  Liu JH  Han ZG 《FEBS letters》2004,576(3):401-407
The present study reported the isolation and characterization of a novel human secreted protein, named as hPAP21 (human protease-associated domain-containing protein, 21 kDa), encoded by the hypothetical gene chromosome 2 open reading frame 7 (C2orf7) that contains signal peptide in its N-terminus, without transmembrane domain, except for PA domain in its middle. Western blotting assay indicated that the c-Myc tagged hPAP21 could be secreted into culture medium in the transfected Chinese hamster ovary cells. However, the molecular weights, whatever intracellular (28 kDa) or extracellular (30 kDa) forms, are larger than that of the prediction. To define whether the glycosylation was important process for its secretion, endoglycosidase H (Endo H) and PNGase F (PNG F) were employed to evaluate the effect of glycosylation types on secretion of hPAP21. Interestingly, the extracellular forms were primarily sensitive to PNG F, not Endo H, implying that complex N-glycosylation could be required for the secretion of hPAP21. Furthermore, N-glycosylation of Asn171 was confirmed as potential crucial process for the secretory protein via site-directed mutagenesis assay. All data will be contributed to the understanding of molecular functions of hPAP21.  相似文献   
93.
The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal compartment that also exhibits budding profiles positive for AP-1. AP-3 colocalizes with clathrin, but to a lesser extent than does AP-1. The AP-3- and AP-1-bearing tubular compartments contain endocytosed transferrin, transferrin receptor, asialoglycoprotein receptor, and low amounts of the cation-independent mannose 6-phosphate receptor and the lysosome-associated membrane proteins (LAMPs) 1 and 2. Quantitative analysis revealed that of these distinct cargo proteins, only LAMP-1 and LAMP-2 are concentrated in the AP-3-positive membrane domains. Moreover, recycling of endocytosed LAMP-1 and CD63 back to the cell surface is greatly increased in AP-3-deficient cells. Based on these data, we propose that AP-3 defines a novel pathway by which lysosomal membrane proteins are transported from tubular sorting endosomes to lysosomes.  相似文献   
94.
95.
The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capabil- ity of the pHluorins and codon optimized for expression in Arabidopsis. PEpHluorin (plant-solubility-modified ecliptic pHluorin) gradually loses fluorescence as pH is lowered with fluorescence vanishing at pH 6.2 and PRpHluorin (plant- solubility-modified ratiomatric pHluorin), a dual-excitation sensor, allowing for precise measurements. Compartment- specific sensors were generated by further fusing specific sorting signals to PEpHluorin and PRpHluorin. Our results show that the pH of cytosol and nucleus is similar (pH 7.3 and 7.2), while peroxisomes, mitochondrial matrix, and plastidial stroma have alkaline pH. Compartments of the secretory pathway reveal a gradual acidification, spanning from pH 7.1 in the endoplasmic reticulum (ER) to pH 5.2 in the vacuole. Surprisingly, pH in the trans-Golgi network (TGN) and mul- tivesicular body (MVB) is, with pH 6.3 and 6.2, quite similar. The inhibition of vacuolar-type H+-ATPase (V-ATPase) with concanamycin A (ConcA) caused drastic increase in pH in TGN and vacuole. Overall, the PEpHluorin and PRpHluorin are excellent pH sensors for visualization and quantification of pH in vivo, respectively.  相似文献   
96.
The Menkes disease ATPase (MNK) is a copper transporter that localizes to the mammalian trans-Golgi network (TGN) and shows substantial co-localization with a ubiquitous TGN resident protein and marker, TGN46. We tested our hypothesis that these two TGN residents and integral membrane proteins are localized to biochemically distinct TGN sub-compartments using constitutively active mutant proteins and drugs that disrupt membrane traffic, lumenal pH and the cellular cytoskeleton. The pH-disrupting agent, monensin, causes MNK to be more diffusely distributed with partial separation of staining patterns for these two TGN residents. Expression of a constitutively active Rho-kinase (ROCK-KIN), which causes formation of juxta-nuclear astral actin arrays, also effects separation of MNK and TGN46 staining patterns. Treatment of ROCK-KIN expressing cells with latrunculin B, an actin-depolymerizing agent, causes complete overlap of MNK and TGN46 staining patterns with concomitant disappearance of polymerized actin. When microtubules are depolymerized in ROCK-KIN expressing cells by nocodazole, both MNK and TGN46 are found in puncate structures throughout the cell. However, a substantial proportion of MNK is still found in a juxta-nuclear location in contrast to TGN46. Actin distribution in these cells reveals that juxta-nuclear MNK is distinct to the astral actin clusters in ROCK-KIN expressing cells where the microtubules were depolymerized. The TGN to cell-surface transport of MNK requires both actin and microtubule networks, whilst the constitutive trafficking of proteins is independent of actin. Taken together, our findings indicate that at least two TGN sub-domains are regulated by separate cytoskeletal dynamics involving actin and tubulin.  相似文献   
97.
98.
The Golgi apparatus breaks down at mitosis, resulting in the dispersal of Golgi-resident proteins. In NRK cells, however, subsets of both TGN38 and golgin-97, but not ManII and GM130, remained associated with the centrosome throughout the cell cycle. This centrosome association of TGN38 and golgin-97 was not disrupted by treatment with brefeldin A, additional inducers of retrograde trafficking and inhibitors of either kinases or protein phosphatases. Anchoring of the Golgi apparatus within the juxtanuclear region depends on microtubules; the association of TGN38 and golgin-97 subsets with the centrosome, however, was insensitive to nocodazole treatment. Drugs such as PDMP, which block Golgi dispersal both by nocodazole, despite microtubule depolymerization, and by inducers of retrograde trafficking, strengthened the microtubule-nucleating activity of the centrosome. These observations cumulatively suggest the centrosome is implicated in nucleation of the Golgi apparatus through interactions with Golgi-resident proteins, such as TGN38 and golgin-97.  相似文献   
99.
Four mammalian golgins are specifically targeted to the trans-Golgi network (TGN) membranes via their C-terminal GRIP domains. The TGN golgins, p230/golgin-245 and golgin-97, are recruited via the GTPase Arl1, whereas the TGN golgin GCC185 is recruited independently of Arl1. Here we show that GCC185 is localized to a region of the TGN distinct from Arl1 and plays an essential role in maintaining the organization of the Golgi apparatus. Using both small interfering RNA (siRNA) and microRNA (miRNA), we show that depletion of GCC185 in HeLa cells frequently resulted in fragmentation of the Golgi apparatus. Golgi apparatus fragments were dispersed throughout the cytoplasm and contained both cis and trans markers. Trafficking of anterograde and retrograde cargo was analysed over an extended period following GCC185 depletion. Early effects of GCC185 depletion included a perturbation in the distribution of the mannose-6-phosphate receptor and a block in shiga toxin trafficking to the Golgi apparatus, which occurred in parallel with the fragmentation of the Golgi ribbon. Internalized shiga toxin accumulated in Rab11-positive endosomes, indicating GCC185 is essential for transport between the recycling endosome and the TGN. In contrast, the plasma membrane-TGN recycling protein TGN38 was efficiently transported into GCC185-depleted Golgi apparatus fragments throughout a 96-h period, and anterograde transport of E-cadherin was functional until a late stage of GCC185 depletion. This study demonstrated (i) a more effective long-term depletion of GCC185 using miRNA than siRNA and (ii) a dual role for the GCC185 golgin in the regulation of endosome-to-TGN membrane transport and in the organization of the Golgi apparatus.  相似文献   
100.
Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号