首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   17篇
  国内免费   10篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   10篇
  2018年   16篇
  2017年   11篇
  2016年   8篇
  2015年   19篇
  2014年   48篇
  2013年   39篇
  2012年   38篇
  2011年   27篇
  2010年   44篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有381条查询结果,搜索用时 953 毫秒
111.
Mammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys59/Cys64), and a C-terminal cysteine/selenocysteine motif (Cys497/Sec498). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions. In the absence of its main electron-accepting substrates (e.g. thioredoxin), wild-type TrxR generates superoxide (O), which was here detected and quantified by ESR spin trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The peroxidase activity of wild-type TrxR efficiently converted the O adduct (DEPMPO/HOO) to the hydroxyl radical adduct (DEPMPO/HO). This peroxidase activity was Sec-dependent, although multiple mutants lacking Sec could still generate O. Variants of TrxR with C59S and/or C64S mutations displayed markedly reduced inherent NADPH oxidase activity, suggesting that the Cys59/Cys64 dithiol is required for O generation and that O is not derived directly from the FAD. Mutations in the Cys59/Cys64 dithiol also blocked the peroxidase and disulfide reductase activities presumably because of an inability to reduce the Cys497/Sec498 active site. Although the bulk of the DEPMPO/HO signal generated by wild-type TrxR was due to its combined NADPH oxidase and Sec-dependent peroxidase activities, additional experiments showed that some free HO could be generated by the enzyme in an H2O2-dependent and Sec-independent manner. The direct NADPH oxidase and peroxidase activities of TrxR characterized here give insights into the full catalytic potential of this enzyme and may have biological consequences beyond those solely related to its reduction of thioredoxin.  相似文献   
112.
Very little is known about the processes used by acidophile organisms to preserve stability and function of respiratory pathways. Here, we reveal a potential strategy of these organisms for protecting and keeping functional key enzymes under extreme conditions. Using Acidithiobacillus ferrooxidans, we have identified a protein belonging to a new cupredoxin subfamily, AcoP, for “acidophile CcO partner,” which is required for the cytochrome c oxidase (CcO) function. We show that it is a multifunctional copper protein with at least two roles as follows: (i) as a chaperone-like protein involved in the protection of the CuA center of the CcO complex and (ii) as a linker between the periplasmic cytochrome c and the inner membrane cytochrome c oxidase. It could represent an interesting model for investigating the multifunctionality of proteins known to be crucial in pathways of energy metabolism.  相似文献   
113.
RNA interference has emerged as a powerful technology for downregulation of specific genes in cells and animals. We have pioneered macrolide- and tetracycline-adjustable short interfering RNA (siRNA) expression for conditional target gene translation fine-tuning in mammalian/human cell lines based on modified RNA polymerase II promoters. Established macrolide- and tetracycline-dependent transactivators/trans-silencers bound and activated modified target promoters tailored for optimal siRNA expression in response to clinical antibiotics' dosing regimes and modulated desired target genes in Chinese hamster ovary (CHO-K1) and human fibrosarcoma (HT-1080) cells with high precision. Further optimization of adjustable RNA polymerase II-based siRNA-specific promoters as well as their combination with various transmodulators enabled near-perfect regulation configurations in specific cell types. Devoid of major genetic constraints compared to basic RNA polymerase III-based siRNA-specific promoters, we expect RNA polymerase II counterparts to significantly advance siRNA-based molecular interventions in biopharmaceutical manufacturing and gene-function analysis as well as gene therapy and tissue engineering.  相似文献   
114.
The effect of triethyltin (TET), triphenyltin (TPT), hexachlorophene (HCP) and cuprizone on adenosine cyclic 3',5'-monophosphate (cyclic AMP) production in rat brain was examined both in vitro and in vivo. TET and TPT inhibited basal adenylate cyclase activity of brain homogenate at a concentration as low as 1 microM in vitro but these compounds had no effect on norepinephrine (NE) and dopamine(DA)-stimluated enzyme activity. HCP and cuprizone failed to inhibit adenylate cyclase activity. In vivo TET given intravenously at a dose rate of 10 mg/kg decreased the cyclic AMP content of cerebrum, but not of medulla. TPT and HCP give intravenously and intraperitoneally respectively failed to decrease the cyclic AMP content of the cerebrum. In the case of TET the reduction in cyclic AMP content of the cerebrum was prevented by maintaining the rats normothermic after treatment. On the basis of these results the inhibition of adenylate cyclase produced by TET in brain homogenates in vitro would not appear to be involved in the development of nervous changes associated with acute TET toxicity, or in the production of progressive brain oedema caused by TET, HCP and cuprizone.  相似文献   
115.
A genetic approach to the molecular cloning of frameshift suppressor genes from yeast is described. These suppressors act by suppressing +1 G:C base-pair insertion mutations in glycine or proline codons. The cloning regimen involves an indirect screen for yeast transformants which harbor a functional suppressor gene inserted into the autonomously replicating “shuttle” vector YEp13, followed by transfer of the hybrid plasmid from yeast into Escherichia coli. Using this procedure a 10.7-kb DNA fragment carrying the SUF2 frameshift suppressor gene has been isolated. This suppressor acts specifically on +1 G:C insertions in proline codons. When inserted into an integrative vehicle and reintroduced into yeast by transformation, this fragment integrates by homologous recombination in the region of the SUF2 locus on chromosome III. A large proportion of the fragment overlaps with another cloned DNA segment which carries the closely linked CDC10 gene. The SUF2 fragment carries at least two tRNA genes. The SUF2 gene and one of the tRNA genes are located on a 0.85-kb restriction fragment within the 10.7-kb segment. A method is also described for the isolation of DNA fragments carrying alternative alleles of the SUF2 locus. Using this procedure, the wild-type suf2+ allele has been cloned.  相似文献   
116.
Cuckoo wasps are a morphologically diverse group of Hymenoptera with parasitoid or cleptoparasitic life histories. In the present paper, we explore the phylogenetic signal in fragments of the mitochondrial genes LSU rRNA and COI to resolve the group's phylogeny. We analyzed sequence data of 33 species representing the taxa Cleptinae, Elampini, Parnopini, and Chrysidini. Most of the currently recognized relationships of major cuckoo wasp lineages are supported by the molecular data. A key difference concerns the phylogenetic position of the Euchroeus (=Brugmoia) group within the tribe Chrysidini. It seems likely that an erroneous interpretation of morphological characters has led to inappropriate rooting of that tribe. We suggest that species of the Euchroeus group be interpreted as forming the stem group of the Chrysidini and that the remaining genera of that tribe be united in a subordinated taxon. Our results imply that the evolution of anal dentition, of significance for breaking into sealed host nests otherwise not accessible to cuckoo wasps, already happened at the base of the Chrysidini and that an even number of anal teeth arose prior to an odd number.  相似文献   
117.
This study aimed to clarify the effects of single and repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activities or expression of some metabolic enzymes of retinoids and the influence of supplemental vitamin A on changed vitamin A homeostasis by TCDD. In Experiment I, the mice were given a single oral dose of 40 mug TCDD/kg body weight, with or without continuous administration of 2,500 IU vitamin A/kg body weight/day, and were killed on day 1, 3, 7, 14, and 28. In Experiment II, the mice were daily given 0.1 microg TCDD/kg body weight, with or without supplemental 2,000 IU vitamin A/kg body weight, and were killed on day 14, 28, and 42. In both experiments, TCDD significantly decreased the hepatic all-trans-retinol level and increased the hepatic all-trans-retinoic acid (RA) content, increased the mRNA and enzymatic activities of retinal oxidase. In TCDD + vitamin A mice, the all-trans retinol content was significantly higher, and the retinal oxidase mRNA was significantly lower on day 3 or 7 in Experiment I and on day 14 in Experiment II, compared to TCDD-treated mice. The induction of the retinal oxidase may contribute to the decrease in hepatic all-trans-retinol level and the increase in hepatic all-trans-RA caused by TCDD. Supplemental vitamin A might decelerate the effect of TCDD on retinal oxidase mRNA.  相似文献   
118.
Bacteriophage T4 α-glucosyl transferase mRNA is made as a polycistronic 21S molecule that is processed during normal infection to the commonly found 14.5S species. By using antibiotic inhibitors of protein synthesis, it is possible to distinguish two steps involved in the processing of the 21S polycistronic α-gt mRNA in T4-infected Escherichia coli. There is an initial cleavage to an 18S molecule that does not require protein synthesis. However, the next step, the conversion of the 18S into the 14.5S molecule, requires simultaneous protein synthesis.  相似文献   
119.
120.
DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号