首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   15篇
  国内免费   6篇
  134篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   10篇
  2016年   8篇
  2015年   9篇
  2014年   15篇
  2013年   10篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有134条查询结果,搜索用时 8 毫秒
31.
Common genetic mutations are absent in neuroblastoma, one of the most common childhood tumours. As a demethylase of 5-methylcytosine (m5C) modification, TET1 plays an important role in tumourigenesis and differentiation. However, the association between TET1 gene polymorphisms and susceptibility to neuroblastoma has not been reported. Three TET1 gene polymorphisms (rs16925541 A > G, rs3998860 G > A and rs12781492 A > C) in 402 Chinese patients with neuroblastoma and 473 cancer-free controls were assessed using TaqMan. Multivariate logistic regression analysis was used to evaluate the association between TET1 gene polymorphisms and susceptibility to neuroblastoma. The GTEx database was used to analyse the impact of these polymorphisms on peripheral gene expression. The relationship between gene expression and prognosis was analysed using Kaplan–Meier analysis with the R2 platform. We found that both rs3998860 G > A and rs12781492 A > C were significantly associated with increased neuroblastoma risk. Stratified analysis further showed that rs3998860 G > A and rs12781492 A > C significantly increased neuroblastoma risk in certain subgroups. In the combined risk genotype model, 1–3 risk genotypes significantly increased risk of neuroblastoma compared with the 0 risk genotype. rs3998860 G > A and rs12781492 A > C were significantly associated with increased STOX1 mRNA expression in adrenal and whole blood, and high expression of STOX1 mRNA in adrenal and whole blood was significantly associated with worse prognosis. In summary, TET1 gene polymorphisms are significantly associated with increased neuroblastoma risk; further research is required for the potential mechanism and therapeutic prospects in neuroblastoma.  相似文献   
32.
33.
Both 5-methylcytosine (5mC) and its oxidized form 5-hydroxymethylcytosine (5hmC) have been proposed to be involved in tumorigenesis. Because the readout of the broadly used 5mC mapping method, bisulfite sequencing (BS-seq), is the sum of 5mC and 5hmC levels, the 5mC/5hmC patterns and relationship of these two modifications remain poorly understood. By profiling real 5mC (BS-seq corrected by Tet-assisted BS-seq, TAB-seq) and 5hmC (TAB-seq) levels simultaneously at single-nucleotide resolution, we here demonstrate that there is no global loss of 5mC in kidney tumors compared with matched normal tissues. Conversely, 5hmC was globally lost in virtually all kidney tumor tissues. The 5hmC level in tumor tissues is an independent prognostic marker for kidney cancer, with lower levels of 5hmC associated with shorter overall survival. Furthermore, we demonstrated that loss of 5hmC is linked to hypermethylation in tumors compared with matched normal tissues, particularly in gene body regions. Strikingly, gene body hypermethylation was significantly associated with silencing of the tumor-related genes. Downregulation of IDH1 was identified as a mechanism underlying 5hmC loss in kidney cancer. Restoring 5hmC levels attenuated the invasion capacity of tumor cells and suppressed tumor growth in a xenograft model. Collectively, our results demonstrate that loss of 5hmC is both a prognostic marker and an oncogenic event in kidney cancer by remodeling the DNA methylation pattern.  相似文献   
34.
35.
36.
Cholangiopathies encompass a heterogeneous group of disorders affecting biliary epithelial cells (i.e. cholangiocytes). Early diagnosis, prognosis and treatment still remain clinically challenging for most of these diseases and are critical for adequate patient care. In the past decade, extensive research has emphasized microRNAs (miRs) as potential non-invasive biomarkers and tools to accurately identify, predict and treat cholangiopathies. MiRs can be released extracellularly conjugated with lipoproteins or encapsulated in extracellular vesicles (EVs). Research on EVs is also gaining attention since they are present in multiple biological fluids and may represent a relevant source of novel non-invasive biomarkers and be vehicles for new therapeutic approaches. This review highlights the most promising candidate miRs and EV-related biomarkers in cholangiopathies, as well as their relevant roles in biliary pathophysiology. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.

Research strategy

PubMed search (April 2017) was done with the following terms: “microRNA”, “miRNA”, “miR”, “extracellular vesicles”, “EV”, “exosomes”, “primary biliary cholangitis”, “primary biliary cholangitis”, “PBC”, “primary sclerosing cholangitis”, “PSC”, “cholangiocarcinoma”, “CCA”, “biliary atresia”, “BA”, “polycystic liver diseases”, “PLD”, “cholangiopathies”, “cholestatic liver disease”. Most significant articles in full-text English were selected. The reference lists of selected papers were also considered.  相似文献   
37.
38.
39.
40.
DNA甲基化失调引起基因表达异常是表观遗传学的一个显著特点。目前已知,由DNA甲基转移酶(DNA methyltransferases,DMNTs)催化DNA甲基化,其酶基因突变或表达异常引起DNA甲基化水平的改变。近期研究发现了一种DNA去甲基化酶--TET(Ten-Eleventranslocation)家族DNA羟化酶,能通过多种途径催化5-甲基胞嘧啶(5.methylcytosine,5-mC)去甲基化,从而调控DNA基化的平衡。5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5-hmC)作为DNA去甲基化多重步骤中重要的中间产物,其水平在肿瘤的发生和发展时期发生显著变化。该文从TET家族蛋白展开,介绍TET蛋白的结构、功能及作用机制以及多种人类肿瘤中丁E丁家族基因与5-hmC水平的相关性及其对肿瘤发生发展、诊断预后等临床意义的研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号