1. The naturally occurring mitochondrial ATPase inhibitor inhibits the mitochondrial ATPase (F1) non-competitively.2. The interaction between inhibitor and inhibitor-depleted F1 or submitochondrial particles is diminished when the ratio of ATP/ADP is low or when energy is generated by substrate oxidation.3. The dissociation of the inhibitor from coupled Mg-ATP particles is promoted when substrates are being oxidized. This results in the appearance of a large uncoupler-stimulated ATPase activity. Activation of the uncoupler-stimulated ATPase activity is also achieved by incubation of the particles with ADP.4. The ATPase activity of Mg-ATP particles is determined by the turnover capacity of F1. When endogenous inhibitor is removed, energy dissipation becomes the rate-limiting step. This energy dissipation can be activated by an uncoupler.5. Evidence is presented for the existence of a non-inhibited intermediate F1-inhibitor complex. 相似文献
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion. 相似文献
It is shown here that Escherichia coli beta-galactosidase has a second Mg2+ binding site that is important for activity. Binding of Mg2+ to the second site caused the k(cat) (with oNPG as the substrate) to increase about 100 s(-1); the Km was not affected. The Kd for binding the second Mg2+ is about 10(-4)M. Since the concentration of free Mg2+ in E. coli is about 1-2 mM, the second site is physiologically significant. Non-polar substitutions (Ala or Leu) for Glu-797, a residue in an active site loop, eliminated the k(cat) increase. This indicates that the second Mg2+ site is near to Glu-797. The Ki values of transition state analogs were decreased by small but statistically significant amounts when the second Mg2+ site was occupied and Arrhenius plots showed that less entropic activation energy is required when the second site is occupied. These inhibitor and temperature results suggest that binding of the second Mg2+ helps to order the active site for stabilization of the transition state. 相似文献
An enzyme which hydrolyzes the acetamido groups of N-acetylglucosamine residues in chitin was partially purified from . The enzyme deacetylates also N-acetylchitooligoses, whereas it is inactive toward bacterial cell wall peptidoglycan, N-acetylated heparin, a polymer of N-acetylgalactosamine, di-N-acetylchitobiose, or N-acetylglucosamine. The enzyme shows a pH optimum of 5.5 and is markedly inhibited by acetate. The occurrence of this enzyme accounts for the formation of chitosan in fungi. 相似文献
1. 1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min.
2. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP.
3. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2′-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site.
4. 4. The nucleotide specificities of ‘coupled processes’ nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.
5. 5. The different nucleotide specificities of uncoupled ATP hydrolysis and coupled processes can be explained even if both processes involve a single common site on the ATPase molecule. This model requires that energy can be ‘coupled’ only when it is released/utilised in the nucleotide binding steps of the mechanism.
6. 6. Adenosine β,γ-imidotriphosphate (AMP-PNP) is not a simple reversible inhibitor of the ATPase, since incubation requires preincubation and is not reversed when the compound is diluted out, or by addition of ATP. This compound inhibits the isolated and membrane-bound ATPase equally well. Its guanosine analogue does not act in this way.
7. 7. In submitochondrial particles, ADP inhibited uncoupled hydrolysis of ATP much more effectively than coupled hydrolysis, the latter being measured both directly (from ATP hydrolysis in the absence of uncoupler) or indirectly, by monitoring ATP-driven reduction of NAD+ by succinate.
8. 8. The effects of ADP and AMP-PNP were interpreted as providing evidence for two of the intermediates in the proposed scheme for coupled triphosphate hydrolysis.
The bacteriophage lambda Xis protein is one of the proteins required for site-specific excisive recombination by which the lambda prophage is excised from the Escherichia coli bacterial chromosome. We cloned the lambda xis gene under the control of several prokaryotic promoters to obtain a sufficient source of the protein for biochemical studies. Our results demonstrate that E. coli lac promoter and lambda pL promoter fusions to the xis gene produce high levels of Xis protein. Induction of the expression vectors results in a 10- to 50-fold increase in Xis activity. In addition, one of these plasmids allows the control of xis expression in vivo. 相似文献
The requirement of actual splitting of ATP for endocytosis in erythrocyte ghosts has been confirmed by use of the ATP analog, 5'-adenylylimidodiphosphate. (AMP-P(NH)P. This compound, in which the oxygen connecting the β and γ phosphorus atoms was replaced by an NH group, did not cause endocytosis nor was it a substrate for ATPase activity. AMP-P(NH)P was a competitive inhibitor both for the endocytosis and the Mg2+-ATPase activities. The of AMP-P(NH)P for Mg2+-ATPase activity was 2.0 · 10?4 M and, while the of ATP for this activity was also 2.0 · 10?4 M indicating nearly identical affinities of ATP and AMP-P(NH)P for the active site. ADP, or ADP plus orthophosphate, did not cause endocytosis, showing that endocytosis was not due to binding of the products of ATP hydrolysis. Sodium or potassium ion or ouabain had no effect on endocytosis, which eliminated the possibility of involvement of the Na+, K+ ATPase in the endocytosis process. Calcium could not be substituted for magnesium; rather it inhibited endocytosis at the concentration of 1 · 10?3 M. EGTA relieved the inhibitory effect of Ca, which indicated that the binding of calcium to the membrane was reversible. These experimental results reaffirm the conclusion that ATP must be split to engender endocytosis under these conditions. Some characteristic parameters of the hemoglobin-fre porcine erythrocyte ghosts were studied in order to characterize the system more adequately. 相似文献