首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   3篇
  67篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2014年   7篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有67条查询结果,搜索用时 0 毫秒
41.
A型链球菌是一类革兰氏阳性病原菌,其产生的多种毒素因子是导致人体多重感染的重要原因。这些菌毒素因子的表达直接或间接地受多个毒素调控系统调控,各个调控系统之间存在相互关联并对病原菌与宿主的相互作用产生影响。干扰毒素的产生或调控通路对于发展特异的抗A型链球菌感染药物具有重要的意义。  相似文献   
42.
HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2 and 1.6 Å) of octomeric HbpS crystallized in the presence and in the absence of haem and demonstrate that iron binds to surface-exposed lysine residues of an octomeric assembly. Based on an analysis of the crystal structures, we propose that the iron atom originates from the haem group and report subsequent biochemical experiments that demonstrate that HbpS possesses haem-degrading activity in vitro. Further examination of the crystal structures has identified amino acids that are essential for assembly of the octomer. The role of these residues is confirmed by biophysical experiments. Additionally, we show that while the octomeric assembly state of HbpS is not essential for haem-degrading activity, the assembly of HbpS is required for its interaction with the cognate sensor kinase, SenS. Homologs of HbpS and SenS/SenR have been identified in a number of medically and ecologically relevant bacterial species (including Vibrio cholerae, Klebsiella pneumoniae, Corynebacterium diphtheriae, Arthrobacter aurescens and Pseudomonas putida), suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to Gram-negative and Gram-positive bacteria. Thus, the data presented provide the first insight into the function of a novel protein family and an example of an iron-mediated interaction between an accessory protein and its cognate two-component sensor kinase.  相似文献   
43.
Recent analysis revealed that, in Escherichia coli the AtoS–AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS–AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS–AtoC/Az in an E. coli ΔatoSC strain restored cPHB biosynthesis to the level of the atoSC+ cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N8-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS–AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS–AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.  相似文献   
44.
The citrus viroid II (CVd‐II, Hop stunt viroid) variant, cachexia 909 (Ca‐909) has been designated as a “cachexia” disease isolate on the basis of inducing extremely mild symptoms on the cachexia indexing host Parson's Special mandarin (PSM). However, Ca‐909 lacks the six‐nucleotide cluster demonstrated to control the pathogenicity of cachexia inducing agents such as CVd‐IIc. Progeny populations of CVd‐IIc and Ca‐909 from the bioamplification host, Etrog citron, and the indexing host PSM were surveyed for clones with possible mutations in the locus of the “cachexia cluster”. The intra‐population diversity and the genealogical relationships among clones of CVd‐IIc and Ca‐909 populations were also analysed using principles of the coalescent theory. CVd‐IIc progeny was found not to mutate in the “cachexia cluster” and Ca‐909 did not acquire any mutations related to the nucleotide sites of the “cachexia cluster”. Specific mutations of the Ca‐909 progeny were found to be similar to the non‐cachexia variant, CVd‐IIa. Population profiles and genealogical patterns of CVd‐IIc and Ca‐909 in Etrog citron were not significantly different. However, although CVd‐IIc progeny were more conserved in PSM, Ca‐909 progeny displayed titre, population profiles, and genealogical patterns more uniform in selected tissues of Parson's Special mandarin than CVd‐IIc. These experimental approaches demonstrate the genetic stability of the cachexia‐agent CVd‐IIc and question the inclusion of Ca‐909 as a cachexia disease agent.  相似文献   
45.
一种新的核糖核酸酶-栝楼核糖核酸酶的纯化   总被引:4,自引:1,他引:4  
从一种高等植物栝楼中分离出一种新的单一碱基特异性核楼核酸内切酶—栝楼核糖核酸酶(RNase TCS),它在pH 3.57M脲的变性条件下,能单一地把RNA分子中尿嘧啶核苷酸的5′端切开,纯化酶在SDS-PAGE中呈单一泳带,分子量为24.2KD,最大吸收峰279nm,比活12800U/mg。  相似文献   
46.
47.
The AtoS–AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS–AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5–4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS–atoC locus (ΔatoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the ΔatoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS–AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS–AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   
48.
Enzymes are versatile catalysts with a growing number of applications in biotechnology. Their properties render them also attractive for waste/pollutant treatment processes and their use might be advantageous over conventional treatments. This review highlights enzymes that are suitable for waste treatment, with a focus on cell-free applications or processes with extracellular and immobilized enzymes. Biological wastes are treated with hydrolases, primarily to degrade biological polymers in a pre-treatment step. Oxidoreductases and lyases are used to biotransform specific pollutants of various nature. Examples from pulp and paper, textile, food and beverage as well as water and chemical industries illustrate the state of the art of enzymatic pollution treatment. Research directions in enzyme technology and their importance for future development in environmental biotechnology are elaborated. Beside biological and biochemical approaches, i.e. enzyme prospection and the design of enzymes, the review also covers efforts in adjacent research fields such as insolubilization of enzymes, reactor design and the use of additives. The effectiveness of enzymatic processes, especially when combined with established technologies, is evident. However, only a limited number of enzymatic field applications exist. Factors like cost and stability of biocatalysts need to be addressed and the collaboration and exchange between academia and industry should be further strengthened to achieve the goal of sustainability.  相似文献   
49.
A bacterial two-component signal transduction system, WalK/WalR, is essential to the cell viability of Gram-positive bacteria and is therefore a potential target for the development of a new class of antibiotics. We have solved the X-ray crystal structure of the DNA-binding domain of the response regulator WalR (WalRc) from a Gram-positive pathogen Staphylococcus aureus, currently causing serious problems in public health through the acquisition of multi-drug resistance. The structure contains a winged helix-turn-helix motif and closely resembles those of WalRs of Bacillus subtilis and Enterococcus faecalis, and also that of PhoB of Escherichia coli. Gel mobility shift assays with mutant WalRs revealed specific interactions of WalR with the target DNA, as elaborated by in silico modeling of the WalRc-DNA complex.  相似文献   
50.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth).Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO3? > Br? > Cl? > I? > acetate ≈ isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an ‘uncoupling’ of ATP hydrolysis from H+ accumulation.Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN? to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN? is a very  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号