首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41082篇
  免费   2731篇
  国内免费   1694篇
  2024年   75篇
  2023年   727篇
  2022年   971篇
  2021年   1339篇
  2020年   1401篇
  2019年   1934篇
  2018年   1637篇
  2017年   1153篇
  2016年   1188篇
  2015年   1372篇
  2014年   2244篇
  2013年   2856篇
  2012年   1697篇
  2011年   2159篇
  2010年   2359篇
  2009年   1888篇
  2008年   1837篇
  2007年   2022篇
  2006年   1780篇
  2005年   1746篇
  2004年   1727篇
  2003年   1380篇
  2002年   1070篇
  2001年   843篇
  2000年   646篇
  1999年   702篇
  1998年   604篇
  1997年   539篇
  1996年   543篇
  1995年   559篇
  1994年   518篇
  1993年   486篇
  1992年   443篇
  1991年   388篇
  1990年   311篇
  1989年   291篇
  1988年   281篇
  1987年   219篇
  1986年   226篇
  1985年   197篇
  1984年   214篇
  1983年   109篇
  1982年   175篇
  1981年   147篇
  1980年   132篇
  1979年   93篇
  1978年   71篇
  1977年   66篇
  1976年   58篇
  1972年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
72.
Using a modified postmodern perspective, Canada's policy of multiculturalism and the emphasis upon ‘unity within diversity’ are related to the theme of globalization and the development of ‘a new world order’. It is argued that Canada is not unique in its efforts to come to terms with the contradictions and conflicts generated by postindustrialism and the realignment of superpowers. Questions of identity, collective self‐determination and the problematic relation between universalism and particularism, in relation to sovereignty, legitimacy, human rights and participation are explored.  相似文献   
73.
74.
《Process Biochemistry》2014,49(5):882-889
The VP4 protein of infectious bursal disease virus (IBDV) is a serine protease that processes the polyprotein for viral assembly. VP4 has been found to associate primarily with type II IBDV tubules that are 24 nm in diameter. In this study, a chimeric VP4, assigned as HS1VP4, was constructed with a VP4-autocleavage site inserted between the N-terminal His-tag and the VP4 sequence. The results showed that the VP4 forms tubules after the self-cleavage of HS1VP4 when expressed in Escherichia coli. Furthermore, a deletion of 28 amino acids at the C-terminus of VP4 resulted in monomers and dimers instead of tubule formation; mutants of S652A and K692A at active site destroyed the activity. The endopeptidase activity of these monomers and dimers was approximately 12.5 times higher than that of VP4 tubules. Additionally, the formation of tubules inhibited VP4 protease activity, as demonstrated through in vitro assays. The production and characterization of monomers or dimers that have greater endopeptidase activity and protease activity than tubules can provide further insight into VP4 tubule assembly and the regulation of VP4 activity in host cells; this insight will facilitate the development of new anti-IBDV strategies.  相似文献   
75.
76.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   
77.
Summary Previous work has shown that the monoclonal antibody 22/18 identifies progenitor cells (blastemal cells) which depend on the nerve for their division in the early stages of limb regeneration in the newt,Notophthalmus viridescens. This antibody also reacts with cultured cells derived from the newt limb, and the intensity of immunoreactivity appears related to cell density and differentiation into myotubes. We report here that the monoclonal antibody 22/18 recognizes a polypeptide (22/18 antigen) which is intracellular and filamentous. Double staining of cells with 22/18 monoclonal antibody and antibodies against various cytoskeletal components indicates that the epitope is expressed on an intermediate filament component. Although this antibody is specific for blastemal cells in cryostat sections of the regenerating limb, its reactivity on immunoblots is not confined to this tissue. The 22/18 antigen is differentially affected by aldehyde fixatives distinguished by the spacing of their reactive groups. While formaldehyde fixation impairs detection of the antigen, ethylene glycol-bis[succinic acid n-hydroxysuccinimide ester] reveals the antigen in sections of normal and regenerating limbs in a distribution that is consistent with the one obtained from immunoblots. We suggest that the 22/18 monoclonal antibody detects a change in protein conformation, probably related to changes in the physiological state of the cell, that occurs transiently during regeneration and possibly during development.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号