首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53406篇
  免费   2876篇
  国内免费   5379篇
  2024年   74篇
  2023年   724篇
  2022年   1086篇
  2021年   1499篇
  2020年   1359篇
  2019年   1849篇
  2018年   1609篇
  2017年   1244篇
  2016年   1412篇
  2015年   1762篇
  2014年   2830篇
  2013年   3585篇
  2012年   2305篇
  2011年   2835篇
  2010年   2252篇
  2009年   2637篇
  2008年   2974篇
  2007年   3086篇
  2006年   3049篇
  2005年   2779篇
  2004年   2533篇
  2003年   2275篇
  2002年   2133篇
  2001年   1619篇
  2000年   1382篇
  1999年   1314篇
  1998年   1227篇
  1997年   1052篇
  1996年   975篇
  1995年   966篇
  1994年   899篇
  1993年   654篇
  1992年   567篇
  1991年   485篇
  1990年   411篇
  1989年   311篇
  1988年   317篇
  1987年   288篇
  1986年   212篇
  1985年   206篇
  1984年   216篇
  1983年   148篇
  1982年   155篇
  1981年   99篇
  1980年   98篇
  1979年   64篇
  1978年   37篇
  1977年   23篇
  1976年   21篇
  1950年   8篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   
992.
Abstract: Cations of various size and charge were used as atomic scale probes of D1 and D2 dopamine receptors. Those cations that perturbed the binding of D1- and D2-selective dopamine receptor antagonists were identified by screening at 5 m M cation. Pseudo-noble-gas-configuration d-transition metals, such as zinc, exerted a complete inhibition of specific binding, whereas most other cations had little or no effect. The nature of zinc's actions was characterized by measuring the radioligand binding properties of [3H]SCH-23390 and [3H]methylspiperone to cloned D1A and D2L dopamine receptors in either the presence or absence of Zn2+. Zinc exerts a low-affinity, dose-dependent, EDTA-reversible inhibition of the binding of subtype-specific antagonists primarily by decreasing the ligands' affinity for their receptors. The mechanism of zinc inhibition appears to be allosteric modulation of the dopamine receptor proteins because zinc increases the dissociation constant ( K D) of ligand binding, Schild-type plots of zinc inhibition reach a plateau, and zinc accelerates antagonist dissociation rates. Here we demonstrate the effect of zinc on the binding of D1- and D2-selective antagonists to cloned dopamine receptors and show that the inhibition by zinc is through a dose-dependent, reversible, allosteric, two-state modulation of dopamine receptors.  相似文献   
993.
Abstract: Changes in the expression of the NMDA receptor subunits (NRs) NR2A, 2B, and 2C were investigated in histo blots of the developing rat brain with subunit-specific antisera. At birth, the NR2B subunit was detected almost ubiquitously, the NR2A subunit staining was faint and restricted to the hippocampus, cerebral cortex, and striatum, and no NR2C subunit immunoreactivity was detected. During the first 3 postnatal weeks, the NR2B subunit became confined to forebrain structures, whereas the NR2A immunoreactivity became abundantly expressed throughout the brain. The NR2C immunoreactivity emerged 5 days after birth in the olfactory bulb, thalamus, and vestibular nuclei and became very intense after 10 days in cerebellar granule cells, its primary site of expression in adulthood. After 3 weeks, NR2A and NR2B immunoreactivity decreased to adult levels, whereas NR2C immunoreactivity remained unchanged. The patterns of distribution of the subunit proteins were in agreement with those of their corresponding mRNAs, as monitored by in situ hybridization histochemistry, although the mRNA translation appeared to be delayed by several days in certain areas. Our results reveal a progressive increase in the heterogeneity of NMDA receptors due to the comparably late onset of NR2A and NR2C subunit expression and by the area-specific rearrangement of NR2B subunit expression following birth.  相似文献   
994.
Abstract: When primary cultures of cerebellar granule neurons are grown in a physiological concentration of KCl (5 m M ) they undergo apoptosis, which can be prevented by growing the cells in the presence of N -methyl- d -aspartate (NMDA). We now show that ethanol inhibits this trophic effect of NMDA, i.e., promotes apoptosis, and also inhibits the NMDA-induced increase in intracellular Ca2+ concentration in cells grown in 5 m M KCl. Both effects of ethanol show a similar concentration dependence and are reversed by a high concentration of glycine, the co-agonist at the NMDA receptor. The data suggest that the effect of ethanol on apoptosis is mediated, at least in part, by inhibition of NMDA receptor function. This effect of ethanol to increase apoptosis could contribute to the previously described in vivo sensitivity of the developing cerebellum to ethanol-induced damage.  相似文献   
995.
Abstract: We analyzed the existence of an additional serotonin (5-HT) receptor subtype, sensitive to 5-carboxamidotryptamine, in the mammalian brain. Radioligand binding studies with [3H]5-HT were carried out in rat, guinea pig, and human brain membranes, in the presence of unlabeled drugs to mask the binding to all known 5-HT receptors, with the exception of 5-HT1E sites. Under these conditions, unlabeled 5-carboxamidotryptamine still showed a biphasic competition curve with a nanomolar affinity component. Saturation studies with 5-[3H]carboxamidotryptamine were carried out in the presence of (±)-8-hydroxy-2-(di- n -propylamino)tetralin, mesulergine, and ergotamine, to mask the binding to all receptors known to be labeled by 5-carboxamidotryptamine. These studies showed the existence in cortex and hippocampus from guinea pig and human brain of a remaining binding site with high affinity ( pK D = 7.8–8.1) and a unique pharmacological profile. 5-HT and 5-carboxamidotryptamine showed nanomolar affinity, whereas 5-methoxytryptamine recognized this binding site with intermediate affinity. Other drugs exhibited low or very low potency in inhibiting this binding. The addition of 5'-guanylylimidodiphosphate significantly reduced the number of binding sites labeled by 5-[3H]carboxamidotryptamine, in the presence of the masking drugs described above, indicating the interaction with a GTP-binding protein. Preliminary autoradiographic studies in human brain appear to indicate that this 5-HT binding site is present in areas such as the globus pallidus, neocortex, and hippocampus, among others.  相似文献   
996.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   
997.
Abstract: Studies determined whether α4β2 or α3β2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 n M for α4β2 and 500 n M for α3β2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing α4β2 receptors were incubated with [γ-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the α4 subunit was present. Phosphorylation of α4 subunits of α4β2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing α3β2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the α3 subunit. Results suggest that the PKA-mediated phosphorylation of α4 and not α3 subunits may explain the differential inactivation by nicotine of these receptors subtypes expressed in oocytes.  相似文献   
998.
Abstract: There is increasing, although largely indirect, evidence that neurotrophic factors not only function as target-derived survival factors for projection neurons, but also act locally to regulate developmental processes. We studied the expression of ciliary neurotrophic factor (CNTF) and the CNTF-specific ligand-binding α-subunit of the CNTF receptor complex (CNTFRα) in the rat retina, a well-defined CNS model system, and CNTF effects on cultured retinal neurons. Both CNTF and CNTFRα (mRNA and protein) are expressed during phases of retinal neurogenesis and differentiation. Retina-specific Müller glia are immunocytochemically identified as the site of CNTF production and CNTFRα-expressing, distinct neuronal cell types as potential CNTF targets. Biological effects on corresponding neurons in culture further support the conclusion that locally supplied CNTF plays a regulatory role in the development of various retinal cell types including ganglion cells and interneurons.  相似文献   
999.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   
1000.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号