首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4083篇
  免费   45篇
  国内免费   42篇
  4170篇
  2024年   2篇
  2023年   19篇
  2022年   27篇
  2021年   46篇
  2020年   36篇
  2019年   56篇
  2018年   49篇
  2017年   26篇
  2016年   47篇
  2015年   165篇
  2014年   456篇
  2013年   387篇
  2012年   433篇
  2011年   525篇
  2010年   371篇
  2009年   109篇
  2008年   81篇
  2007年   94篇
  2006年   94篇
  2005年   107篇
  2004年   109篇
  2003年   95篇
  2002年   42篇
  2001年   26篇
  2000年   41篇
  1999年   62篇
  1998年   49篇
  1997年   69篇
  1996年   52篇
  1995年   53篇
  1994年   62篇
  1993年   30篇
  1992年   39篇
  1991年   37篇
  1990年   26篇
  1989年   20篇
  1988年   21篇
  1987年   22篇
  1986年   16篇
  1985年   21篇
  1984年   33篇
  1983年   23篇
  1982年   34篇
  1981年   15篇
  1980年   12篇
  1979年   13篇
  1978年   4篇
  1977年   5篇
  1974年   2篇
  1971年   2篇
排序方式: 共有4170条查询结果,搜索用时 15 毫秒
51.
Thrombin is a potent platelet agonist that activates platelets and other cells of the cardiovascular system by cleaving its G-protein-coupled receptors, protease-activated receptor 1 (PAR1), PAR4, or both. We now show that cleaving PAR1 and PAR4 with α-thrombin induces heterodimer formation. PAR1-PAR4 heterodimers were not detected when unstimulated; however, when the cells were stimulated with 10 nm α-thrombin, we were able to detect a strong interaction between PAR1 and PAR4 by bioluminescence resonance energy transfer. In contrast, activating the receptors without cleavage using PAR1 and PAR4 agonist peptides (TFLLRN and AYPGKF, respectively) did not enhance heterodimer formation. Preventing PAR1 or PAR4 cleavage with point mutations or hirugen also prevented the induction of heterodimers. To further characterize the PAR1-PAR4 interactions, we mapped the heterodimer interface by introducing point mutations in transmembrane helix 4 of PAR1 or PAR4 that prevented heterodimer formation. Finally, we show that mutations in PAR1 or PAR4 at the heterodimer interface prevented PAR1-assisted cleavage of PAR4. These data demonstrate that PAR1 and PAR4 require allosteric changes induced via receptor cleavage by α-thrombin to mediate heterodimer formation, and we have determined the PAR1-PAR4 heterodimer interface. Our findings show that PAR1 and PAR4 have dynamic interactions on the cell surface that should be taken into account when developing and characterizing PAR antagonists.  相似文献   
52.
Membrane traffic requires the specific concentration of protein cargos and exclusion of other proteins into nascent carriers. Critical components of this selectivity are the protein adaptors that bind to short, linear motifs in the cytoplasmic tails of transmembrane protein cargos and sequester them into nascent carriers. The recruitment of the adaptors is mediated by activated Arf GTPases, and the Arf-adaptor complexes mark sites of carrier formation. However, the nature of the signal(s) that initiates carrier biogenesis remains unknown. We examined the specificity and initial sites of recruitment of Arf-dependent adaptors (AP-1 and GGAs) in response to the Golgi or endosomal localization of specific cargo proteins (furin, mannose-6-phosphate receptor (M6PR), and M6PR lacking a C-terminal domain M6PRΔC). We find that cargo promotes the recruitment of specific adaptors, suggesting that it is part of an upstream signaling event. Cargos do not promote adaptor recruitment to all compartments in which they reside, and thus additional factors regulate the cargo''s ability to promote Arf activation and adaptor recruitment. We document that within a given compartment different cargos recruit different adaptors, suggesting that there is little or no free, activated Arf at the membrane and that Arf activation is spatially and temporally coupled to the cargo and the adaptor. Using temperature block, brefeldin A, and recovery from each, we found that the cytoplasmic tail of M6PR causes the recruitment of AP-1 and GGAs to recycling endosomes and not at the Golgi, as predicted by steady state staining profiles. These results are discussed with respect to the generation of novel models for cargo-dependent regulation of membrane traffic.  相似文献   
53.
Adjuvant treatment is still only working in a small percentage of breast cancer patients. Therefore, new strategies need to be developed. Immunotherapies are a very promising approach because they could successfully attack tumor cells in the stage of dormancy. To assess the feasibility of using an allogeneic approach for vaccination of breast cancer patients, we selected a CD80-transfected breast cancer cell line based on its immunogenic properties. Using CD80+ KS breast cancer cells and human leukocyte antigen (HLA)-A*02–matched peripheral blood mononuclear cells (PBMCs) of breast cancer patients in allogeneic mixed lymphocyte–tumor cell cultures (MLTCs), it was possible to isolate HLA-A*02–restricted cytotoxic T cells (CTLs). Furthermore, a genetically modified KS variant expressing influenza A matrix protein serving as a surrogate tumor-associated antigen (TAA) was able to stimulate flu peptide-specific T cells alongside the induction of alloresponses in MLTCs. KS breast cancer cells were demonstrated to express already known TAAs such as CEA, MUC-1, MAGE-1, MAGE-2, and MAGE-3. To further improve antigenicity, HER-2/neu was added to this panel as a marker antigen known to elicit HLA-A*02–restricted CTLs in patients with breast cancer. Thus, the antigen-processing and antigen-presentation capacity of KS cells was further demonstrated by the stimulation of HER-2/neu–specific CD8+ T cells in PBMCs of breast cancer patients in vitro. These results gave a good rationale for a phase I/II trial, where the CD80+ HER-2/neu–overexpressing KS variant is actually used as a cellular vaccine in patients with metastatic breast cancer. As a proof of principle, we present data from two patients where a significant increase of interferon- (IFN-) release was detected when postvaccination PBMCs were stimulated by allogeneic vaccine cells as well as by HLA-A*02–restricted HER-2/neu epitopes. In whole cell vaccine trials, monitoring is particularly challenging because of strong alloresponses and limited knowledge of TAAs. In this study, a panel of HER-2/neu epitopes, together with the quantitative real time (qRT)-PCR method to analyze vaccine-induced cytokines secreted by T cells, proved to be highly sensitive and feasible to perform an immunological staging following vaccination.  相似文献   
54.
55.
TGF-β modulates numerous diverse cellular phenotypes including growth arrest in epithelial cells and proliferation in fibroblasts. Although the Smad pathway is fundamental for the majority of these responses, recent evidence indicates that non-Smad pathways may also have a critical role. Here we report a novel mechanism whereby the nonreceptor tyrosine focal adhesion kinase (FAK) functions as an adaptor necessary for cell type-specific responses to TGF-β. We show that in contrast to Smad actions, non-Smad pathways, including c-Abl, PAK2, and Akt, display an obligate requirement for FAK. Interestingly, this occurs in Src null SYF cells and is independent of FAK tyrosine phosphorylation, kinase activity, and/or proline-rich sequences in the C-terminal FAT domain. FAK binds the phosphatidylinositol 3-kinase (PI3K) p85 regulatory subunit following TGF-β treatment in a subset of fibroblasts but not epithelial cells and has an obligate role in TGF-β-stimulated anchorage-independent growth and migration. Together, these results uncover a new scaffolding role for FAK as the most upstream component regulating the profibrogenic action of TGF-β and suggest that inhibiting this interaction may be useful in treating a number of fibrotic diseases.  相似文献   
56.
AIM:To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS:We established mcMSC lines using subfractionation culturing method from bone marrow samples obtained from long bones.These lines were characterized by measuring cell growth, cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability. Nonclonal MSCs isolated by the conventional gradient centrifugation method were used as controls. RESULTS:All mcMSC lines showed typical nonclonal MSC-like spindle shape morphology. Lines differed inoptimal growth density requirement.Cell surface epitope prof iles of these mcMSC lines were similar to those of nonclonal MSCs. However, some lines exhibited different expression levels in a few epitopes, such as CD44 and CD105. Differentiation assays showed that 90% of the mcMSC lines were capable of differentiating into adipogenic and/or chondrogenic lineages, but only 20% showed osteogenic lineage differentiation. T-cell suppression analysis showed that 75% of the lines exhibited T-cell suppression capability. CONCLUSION:mcMSC lines have similar cell morphology and cell growth rate but exhibit variations in their cell surface epitopes, differentiation potential, lineage-specifi c gene expression and T-cell suppression capability.  相似文献   
57.
CS7BL/6 mice were sensitized with an ip injection of allogeneic P-815 mastocytoma cells. Fifteen days later the spleen cells of the tumor allosensitized mice were cultured and tested for their responsiveness to mitogens and alloantigens, and for their ability to generate cytotoxic cells in vitro. The results indicate that 15 day tumor-sensitized spleen cells are hypo-responsive in mixed lymphocyte culture (MLC) with DBA/2 or AKR as stimulating spleen cells. The cells which are hypo-responsive in MLC can proliferate in response to mitogens and they also can generate cytotoxic cells in vitro. MLC reactivity recovers in about 2–3 months which is 112–212 months after the mice have rejected their tumors. The mechanism of MLC hypo-responsiveness was investigated. The results suggest the presence of a suppressor cell which does not appear to be a macrophage or a B-cell. The suppressor cell can be separated from the cytotoxic cell and therefore appears to be a noncytotoxic T-cell.  相似文献   
58.
59.
Two monobiotinylated analogs of neuropeptide Y (NPY) were synthesized by coupling the N-hydroxysuccinimidyl esters of biotin and (6-biotinylamido)-hexanoic acid, respectively, to the free alpha-NH2 group of the side chain protected NPY peptide resin. Crude peptides obtained by HF cleavage were purified by RPLC and their integrities were confirmed by amino acid and mass spectral analysis. As with NPY, both biotinylated analogs inhibited 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes in a dose-dependent manner. N-alpha-[(6-biotinylamido)-hexanoyl]-NPY exhibited potencies comparable to that of NPY whereas N-alpha-biotinyl-NPY was slightly less potent. In the in vivo experiments, however, both the biotinylated analogs exhibited responses comparable to NPY in increasing arterial blood pressure and decreasing heart rate in anesthetized rats. The responses of the biotinyl analogs were longer lasting than those of NPY. Histochemical studies revealed that N-alpha-[(6-biotinylamido)-hexanoyl]-NPY could label the NPY receptors in rat cardiac ventricular tissues. This labeling was specific since intact NPY inhibited the staining. These studies show that biotinyl-NPY analogs exhibit biological potencies comparable to intact NPY and can therefore be used to further probe the NPY-receptor interaction.  相似文献   
60.
Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号