首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   8篇
  国内免费   36篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   20篇
  2013年   26篇
  2012年   17篇
  2011年   16篇
  2010年   15篇
  2009年   31篇
  2008年   23篇
  2007年   25篇
  2006年   20篇
  2005年   24篇
  2004年   28篇
  2003年   35篇
  2002年   15篇
  2001年   18篇
  2000年   17篇
  1999年   27篇
  1998年   25篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有546条查询结果,搜索用时 109 毫秒
101.
We have examined the molecular and photosynthetic responses of a planktonic cyanobacterium to shifts in light intensity over periods up to one generation (7 h). Synechococcus sp. PCC 7942 possesses two functionally distinct forms of the D1 protein, D1∶1 and D1∶2. Photosystem II (PSII) centers containing D1∶1 are less efficient and more susceptible to photoinhibition than are centers containing D 1∶2. Under 50 μmol photons· m?2·s?1, PSII centers contain D1∶1, but upon shifts to higher light (200 to 1000 μmol photons·m?2·s?1), D1∶1 is rapidly replaced by D 1∶2, with the rate of interchange dependent on the magnitude of the light shift. This interchange is readily reversed when cells are returned to 50 μmol photons·m?2·s?1. If, however, incubation under 200 μmol photons·m?2·s?1 is extended, D1∶1 content recovers and by 3 h after the light shift D1∶1 once again predominates. Oxygen evolution and chlorophyll (Chl) fluorescence measurements spanning the light shift and D1 interchanges showed an initial inhibition of photosynthesis at 200 μmol photons·m?2·s?1, which correlates with a proportional loss of total D1 protein and a cessation of growth. This was followed by recovery in photosynthesis and growth as the maximum level of D 1∶2 is reached after 2 h at 200 μmol photons·m?2·s?1. Thereafter, photosynthesis steadily declines with the loss of D1∶2 and the return of the less-efficient D1∶1. During the D1∶1/D1∶2 interchanges, no significant change occurs in the level of phycocyanin (PC) and Chl a, nor of the phycobilisome rod linkers. Nevertheless, the initial PC/Chl a ratio strongly influences the magnitude of photo inhibition and recovery during the light shifts. In Synechococcus sp. PCC 7942, the PC/Chl a ratio responds only slowly to light intensity or quality, while the rapid but transient interchange between D1∶1 and D 1∶2 modulates PSII activity to limit damage upon exposure to excess light.  相似文献   
102.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   
103.
A part of the tRNALeu (UAA) gene containing a 240-nucleotidegroup I intron was amplified by PCR from cyanobacterium SynechococcusPCC 6301 genomic DNA. The pre-tRNA synthesized from the clonedPCR product was efficiently self-spliced in vitro under physiologicalconditions. The gene encoding the tRNALeu (UAA), trnL-UAA, wasisolated from a Synechococcus PCC 6301 genomic library and thenucleotide sequence of a 2,167-bp portion was determined. ThetrnL-UAA consists of a 34-bp 5' exon, a 240-bp group I intronand a 50-bp 3' exon. In addition, three open reading frames(ORF1, ORF2 and ORF3) were found in the 5' and 3' flanking regionsof trnL-UAA. The predicted protein sequence of ORF3, which islocated 74-bp upstream from trnL-UAA on the opposite strand,shows 66.2% amino acid identity to that of the SynechocystisPCC 6803 gene encoding subunit L of NADH dehydrogenase (ndhL).  相似文献   
104.
The psaA and psaB genes, which encode the P700 chlorophyll a apoproteins of the Photosystem I complex, have been cloned from the unicellular, transformable cyanobacterium Synechococcus sp. PCC 7002. The nucleotide sequence of these genes and of their flanking sequences have been determined by the chain termination method. As found in the chloroplast genomes of higher plants, the psaA gene lies 5 to the psaB gene; however, the cyanobacterial genes are separated by a greater distance (173 vs. 25–26 bp). The psaA gene is predicted to encode a polypeptide of 739 amino acid residues (81.7 kDa), and the psaB gene is predicted to encode a polypeptide of 733 residues (81.4 kDa). The cyanobacterial psa gene products are 76% to 81% identical to their higher plant homologues; moreover, because of conservative amino acid replacements, the cyanobacterial sequences are more than 95% homologous to those determined for higher plants. These results provide the basis for a genetic analysis of Photosystem I, and are discussed in relationship to structural and functional aspects of the Photosystem I complexes of both cyanobacteria and higher plants.  相似文献   
105.
The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm−2, UV-A: 25.70 Wm−2 and PAR: 118.06 Wm−2) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.  相似文献   
106.
107.
108.
S Kürten  G Obe 《Mutation research》1975,27(2):285-294
The Chinese hamster bone marrow was used as a test system in vivo to analyse the chromosome-danaging effect of bleomycin. Both chromosome and chromatid aberrations were found. Mitoses with aberrations (Ma) show a linear dose-effect relationship after a recovery time of 24 h, the same hold true for cells with micronuclei (Cm) and for mitoses with premature chromosome condensation (PCC). The dose-effect relationships for Ma, Cm and PCC run parallel to each other with Ma at the highest and PCC at the lowest level (Ma greater than Cm greater than PCC). The time-effect relationships for Ma, Cm and PCC show that after 12 h recovery time there are no PCCs but the highest frequencies of Ma and Cm indicating that most cells are in their first post-treatment mitoses or Gi-phases at this fixation time. In addition to the frequency determinations autoradiographic analysis were performed to clarigy the nature of the PCCs. The results are interpreted as follows: bleomycin induces chromosomal aberrations that in turn give rise to micronuclei by means of lagging chromatin, main and micronuclei eventually become asynchronous in their cell cycles and mitosing main nuclei induce PCC in the micronuclei.  相似文献   
109.
Ishino Y  Okada H  Ikeuchi M  Taniguchi H 《Proteomics》2007,7(22):4053-4065
MS combined with database searching has become the preferred method for identifying proteins present in cell or tissue samples. The technique enables us to execute large-scale proteome analyses of species whose genomes have already been sequenced. Searching mass spectrometric data against protein databases composed of annotated genes has been widely conducted. However, there are some issues with this technique; wrong annotations in protein databases cause deterioration in the accuracy of protein identification, and only proteins that have already been annotated can be identified. We propose a new framework that can detect correct ORFs by integrating an MS/MS proteomic data mapping and a knowledge-based system regarding the translation initiation sites. This technique can provide correction of predicted coding sequences, together with the possibility of identifying novel genes. We have developed a computational system; it should first conduct the probabilistic peptide-matching against all possible translational frames using MS/MS data, then search for discriminative DNA patterns around the detected peptides, and lastly integrate the facts using empirical knowledge stored in knowledge bases to obtain correct ORFs. We used photosynthetic bacteria Synechocystis sp. PCC6803 as a sample prokaryote, resulting in the finding of 14 N-terminus annotation errors and several new candidate genes.  相似文献   
110.
The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait. Inactivation of the ycf54 gene (slr1780) in Synechocystis 6803 resulted in a strain that exhibited significantly reduced Chl levels. A detailed analysis of Chl precursors in the ycf54 mutant revealed accumulation of very high levels of Mg-protoporphyrin IX methyl ester and only traces of protochlorophyllide, the product of the cyclase, were detected. Western blotting demonstrated that levels of the cyclase component Sll1214 and the Chl biosynthesis enzymes Mg-protoporphyrin IX methyltransferase and protochlorophyllide reductase are significantly impaired in the ycf54 mutant. Ycf54 is, therefore, essential for the activity and stability of the oxidative cyclase. We discuss a possible role of Ycf54 as an auxiliary factor essential for the assembly of a cyclase complex or even a large multienzyme catalytic center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号