首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   9篇
  国内免费   36篇
  546篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   20篇
  2013年   26篇
  2012年   17篇
  2011年   16篇
  2010年   15篇
  2009年   31篇
  2008年   23篇
  2007年   25篇
  2006年   20篇
  2005年   24篇
  2004年   28篇
  2003年   35篇
  2002年   15篇
  2001年   18篇
  2000年   17篇
  1999年   27篇
  1998年   25篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
11.
Despite significant progress in clarifying the subunit compositions and functions of the multiple NADPH dehydrogenase (NDH‐1) complexes in cyanobacteria, the subunit maturation and assembly of their NDH‐1 complexes are poorly understood. By transformation of wild‐type cells with a transposon‐tagged library, we isolated three mutants of Synechocystis sp. PCC 6803 defective in NDH‐1‐mediated cyclic electron transfer and unable to grow under high light conditions. All the mutants were tagged in the same slr1097 gene, encoding an unknown protein that shares significant homology with the Arabidopsis protein chlororespiratory reduction 6 (CRR6). The slr1097 product was localized in the cytoplasm and was required for efficient assembly of NDH‐1 complexes. Analysis of the interaction of Slr1097 with 18 subunits of NDH‐1 complexes using a yeast two‐hybrid system indicated a strong interaction with NdhI but not with other Ndh subunits. Absence of Slr1097 resulted in a significant decrease of NdhI in the cytoplasm, but not of other Ndh subunits including NdhH, NdhK and NdhM; the decrease was more evident in the cytoplasm than in the thylakoid membranes. In the ?slr1097 mutant, NdhH, NdhI, NdhK and NdhM were hardly detectable in the NDH‐1M complex, whereas almost half the wild‐type levels of these subunits were present in NDH‐1L complex; similar results were observed in the NdhI‐less mutant. These results suggest that Slr1097 is involved in the maturation of NdhI, and that assembly of the NDH‐1M complex is strongly dependent on this factor. Maturation of NdhI appears not to be crucial to assembly of the NDH‐1L complex.  相似文献   
12.
Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-β-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.  相似文献   
13.
Cyanobacteria have developed various response mechanisms in long evolution to sense and adapt to external or internal changes under abiotic stresses. The signal transduction system of a model cyanobacterium Synechocystis sp. PCC 6803 includes mainly two-component signal transduction systems of eukaryotic-type serine/threonine kinases (STKs), on which most have been investigated at present. These two-component systems play a major role in regulating cell activities in cyanobacteria. More and more co-regulation and crosstalk regulations among signal transduction systems had been discovered due to increasing experimental data, and they are of great importance in corresponding to abiotic stresses. However, mechanisms of their functions remain unknown. Nevertheless, the two signal transduction systems function as an integral network for adaption in different abiotic stresses. This review summarizes available knowledge on the signal transduction network in Synechocystis sp. PCC 6803 and biotechnological implications under various stresses, with focuses on the co-regulation and crosstalk regulations among various stress-responding signal transduction systems.  相似文献   
14.
15.
16.
Low-temperature (77 K) fluorescence emission spectra of intact cells of a cyanobacterium, Synechocystis sp. PCC 6714, and a green alga, Chlamydomonas reinhardtii, were quantitatively analyzed to examine differences in PS I/PS II stoichiometries. Cells cultured under different spectral conditions had various PS I/PS II molar ratios when estimated by oxidation-reduction difference absorption spectra of P700 (for PS I) and Cyt b-559 (for PS II) with thylakoid membranes. The fluorescence emission spectra under the Chl a excitation at 435 nm were resolved into several component bands using curve-fitting methods and the relative band area between PS II (F685 and F695) and PS I (F710 or F720) emissions was compared with the PS I/PS II stoichiometries of the various cell types. The results indicated that the PS I/PS II fluorescence ratios correlated closely with photosystem stoichiometries both in Synechocystis sp. PCC 6714 and in C. reinhardtii grown under different light regimes. Furthermore, the correlation between the PS I/PS II fluorescence ratios and the photosystem stoichiometries is also applicable to vascular plants.  相似文献   
17.
18.
Cyanobacteria possess thylakoid membranes that differ in their protein composition from the cytoplasmic membrane. To study possible pathways of protein targeting to these membranes, we have investigated whether or not cyanobacteria have a homologue or homologues of the signal recognition particle-like chaperone Ffh. We have amplified a fragment of ffh by polymerase chain reaction and established that ffh is present as a single copy in the genomes of three cyanobacterial species. We have cloned and sequenced ffh from Synechococcus sp. PCC7942 and predict that Ffh functions as a ribonucleoprotein in cyanobacteria and chloroplasts.  相似文献   
19.
以4-碱基限制性内切酶部分酶切集胞藻PCC6803基因文库总质粒DNA,并插入卡那霉素抗性基因标记,构建了二级随机插入诱变文库。以该诱变文库总DNA转化集胞藻PCC6803,得到大量有抗性标记基因随机插入的转化子,利用这一方法获得了不能进行光激活异养生长的突变株,并克隆了抗性标记基因插入部位DNA片段,在持续光照但加DCMU抑制光合作用的情况下,这些突变株仍然能够利用葡萄糖异养生长,推测突变基因与短时光信号的感应有关。  相似文献   
20.
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak (<0.5 micromol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 micromol m(-2) s(-1) or above, but no growth at 0.5 micromol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号