首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2831篇
  免费   114篇
  国内免费   52篇
  2023年   63篇
  2022年   64篇
  2021年   86篇
  2020年   54篇
  2019年   72篇
  2018年   60篇
  2017年   59篇
  2016年   31篇
  2015年   63篇
  2014年   81篇
  2013年   131篇
  2012年   92篇
  2011年   91篇
  2010年   72篇
  2009年   103篇
  2008年   121篇
  2007年   130篇
  2006年   125篇
  2005年   92篇
  2004年   128篇
  2003年   91篇
  2002年   94篇
  2001年   67篇
  2000年   66篇
  1999年   71篇
  1998年   57篇
  1997年   51篇
  1996年   60篇
  1995年   65篇
  1994年   59篇
  1993年   50篇
  1992年   43篇
  1991年   58篇
  1990年   51篇
  1989年   52篇
  1988年   39篇
  1987年   33篇
  1986年   31篇
  1985年   28篇
  1984年   26篇
  1982年   28篇
  1981年   23篇
  1980年   22篇
  1979年   15篇
  1978年   21篇
  1977年   15篇
  1976年   14篇
  1973年   10篇
  1972年   9篇
  1971年   9篇
排序方式: 共有2997条查询结果,搜索用时 15 毫秒
11.
12.
给乌拉坦麻醉六鼠侧脑室注射P物质(SP)10μg,引起动脉血压、心率和内脏交感神经放电增加。同样剂量的SP静脉注射后却引起血压降低。阿托品预处理不影响SP的开心率作用。预先脑室注射0.25,4,64μg阿片受体拮抗剂纳洛酮,对SP的升压效应有剂量依赖式对抗作用。以上说明脑室注射SP 引起的血压升高是交感神经活动增强,导致心率加快及外周血管紧张性增加的结果,并提示SP的中枢升压效应可能与脑内释放内源性阿片样物质有关。  相似文献   
13.
Summary The fate of ascending projections of thoracic interneurons in the metamorphosing brain of Tenebrio molitor is described. Persistent brain neurons were identified and their fate is described during metamorphosis. The projection sites of ascending elements are invariable throughout metamorphosis both in quantitative and in qualitative terms. Some of these ascending neurons are serotonin-immunoreactive and this set of neurons maintains a constant projection site within the metamorphosing brain. The alterations in the projection sites of these and other ascending neurons in the ventral nerve cord were analysed experimentally. The central projection sites of these persistent ascending neurons are not important for the maintenance of their nerve cord projections throughout metamorphosis. Experimental deletion of ascending neurons which project into the suboesophageal ganglion varies the shape of persistent central neurons.  相似文献   
14.
Summary The presence of neurofilament (NF)-like and glial fibrillary acidic protein (GFAP)-like immunoreactivities was studied in sympathetic ganglia of adult rats and guinea pigs during normal conditions and after perturbation. In the superior cervical ganglion (SCG) of normal rats, many ganglion cells and nerve fibers show NF immunoreactivity. Some of these nerve fibers disappear after preganglionic decentralization of SCG; this indicates the presence of a mixture of preand postganglionic NF-positive nerves in the ganglion. Cuts in both preand postganglionic nerves result in a marked increase in GFAP immunoreactivity in SCG, whereas NF immunoreactivity increases in nerve cell bodies after preganglionic cuts. Only a few ganglion cells show NF immunoreactivity in the normal SCG of guinea pig. All intraganglionic NF-positive nerves are of preganglionic origin; decentralization abolishes NF immunoreactivity in these nerve fibers. The inferior mesenteric ganglion, the hypogastric nerves and colonic nerves in guinea pigs contain large numbers of strongly NF-immunoreactive nerve fibers.When the SCG of adult rat is grafted to the anterior eye chamber of adult rat recipients, both ganglionic cell bodies and nerve fibers, forming on the host iris from the grafted ganglion, are NF-positive. As only the perikarya of these neurons normally exhibit NF immunoreactivity, and the terminal iris arborizations are NF-negative, it appears that the grafting procedure causes NF immunoreactivity to become more widespread in growing SCG neurons.  相似文献   
15.
Summary By combined enzymatic and mechanical treatment, it was possible to dissociate the sensory epithelium of developing antennae of male Antheraea polyphemus and A. pernyi silkmoths from the stage of separation of the antennal branches up to the early stages of cuticle deposition. Large numbers of entire developing trichoid sensilla were isolated. These are characterized by a large trichogen cell with a long apical, hair-forming process and a large nucleus. A cluster of 2–3 sensory neurons, enclosed by the thecogen cell, is situated in the basal region. The dendrites run past the nucleus of the trichogen cell into the apical process from which they protrude laterally. The nuclei of the tormogen and a 4th enveloping cell can be distinguished near the base of the prospective hair. After further dissociation, only the neuron clusters remain, still enclosed by their thecogen cell and often attached to the antennal branch nerve via their axons. It is finally possible to disrupt the thecogen cells and the axons, leaving the sensory neurons with inner dendritic segments and axon stumps. The majority of these neurons can be expected to be olfactory.  相似文献   
16.
Summary The voltage clamp technique is a powerful method for studying the physiology of excitable membrane. This technique has made possible the determination of ionic responses generated by activation of either receptor-mediated or voltage-dependent processes. The development of the whole-cell, tight-seal voltage clamp method has allowed the analysis and examination of membrane physiology at the single cell level. The method allows the characterization of voltage-dependent ionic conductances both at the macroscopic (whole-cell) and at the microscopic (unitary conductance or single channel) level in cells less than 10 µm in diameter, a feat difficult to achieve with conventional fine-tipped micropipettes.In this paper, several methologies used for culturing neuronal and non-neuronal cells in the laboratory are described. A comparison between the two modes of voltage clamp using blunt-tipped patch-microelectrodes, the switching (discontinuous) and the non-switching (continuous) modes, of the Axoclamp-2A amplifier is made. Some results on membrane currents obtained from neuronal and non-neuronal cells using the single electrode whole-cell tight-seal voltage clamp is illustrated. The possible existence of two inactivating K+ currents, one dependent on Ca++ the other is not, is discussed.  相似文献   
17.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus.  相似文献   
18.
1. The working hypothesis that neuropeptide gene expression in a neuron is an indicator of that neuron's physiological activity is discussed. 2. Representative examples from the literature are presented to support the hypothesis. 3. Further, we discuss the regulation of expression of two opioid peptides, preproenkephalin and preprodynorphin, in laminae I and II of the spinal cord and in nucleus caudalis of the trigeminal nuclear complex, where they may play a role in pain modulation. 4. The expression of the opioid peptide genes can be induced by both painful and nonnoxious stimuli in neurons in time-dependent and sensory-specific fashions.  相似文献   
19.
Summary Injection of wheat-germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the superior cervical ganglion (SCG) of the rat results in accumulation of WGA-HRP in sympathetic postganglionic neurons in the contralateral SCG. The sympathetic pathways involved and the mechanism underlying the labeling were investigated. The labeling in neurons in the contralateral SCG was apparent 6 h after injection and increased in intensity with longer survival times. The number of labeled neurons reached 1300 at 72 h after the injection. Transection of the external (ECN) or internal carotid nerves (ICN) resulted in considerable reduction in the number of labeled neurons. Combined transection of both ECN and ICN virtually eliminated labeling in the contralateral SCG. This provides strong evidence that these two nerves are the major pathways for WGA-HRP transport out of the SCG. No labeling was observed in the contralateral SCG following injection of horseradish peroxidase (HRP). Therefore, it seems unlikely that a direct nerve connection exists between the bilateral ganglia. Instead, the labeling of contralateral SCG neurons appears to depend on the transneuronal transport capacity of WGA-HRP, which conveys the marker in an anterograde direction along the postganglionic fibers to terminals in sympathetic target organs, and then delivers it transneuronally to contralateral SCG neurons. We suggest that the sympathetic nerve fibers originating in the bilateral SCGs run intermingled and are in close contact in their peripheral target organs.  相似文献   
20.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号