首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4012篇
  免费   123篇
  国内免费   93篇
  4228篇
  2024年   6篇
  2023年   43篇
  2022年   40篇
  2021年   65篇
  2020年   75篇
  2019年   112篇
  2018年   102篇
  2017年   103篇
  2016年   127篇
  2015年   101篇
  2014年   208篇
  2013年   291篇
  2012年   164篇
  2011年   331篇
  2010年   220篇
  2009年   224篇
  2008年   225篇
  2007年   220篇
  2006年   203篇
  2005年   154篇
  2004年   137篇
  2003年   102篇
  2002年   74篇
  2001年   67篇
  2000年   46篇
  1999年   45篇
  1998年   57篇
  1997年   49篇
  1996年   53篇
  1995年   51篇
  1994年   44篇
  1993年   40篇
  1992年   31篇
  1991年   28篇
  1990年   34篇
  1989年   33篇
  1988年   26篇
  1987年   33篇
  1986年   28篇
  1985年   25篇
  1984年   24篇
  1983年   24篇
  1982年   28篇
  1981年   26篇
  1980年   34篇
  1979年   30篇
  1978年   11篇
  1977年   8篇
  1973年   5篇
  1972年   6篇
排序方式: 共有4228条查询结果,搜索用时 17 毫秒
151.
云南丽江-大理地区现代表土花粉垂直分布特征   总被引:4,自引:0,他引:4  
文章主要研究云南丽江-大理地区不同海拔高度表土花粉。虽然松属花粉在各个植被带都占有优势,但是建群种花粉含量相对较高。降趋对应分析法(detrended correspondenc eanalysis,简称DCA)分析显示,表土花粉的分布和海拔之间具有非常密切的关系,DCA第一轴的值和海拔高度之间的线性相关系数达0.82(r^2=0.82)。此次研究表明,在云南山地,可以通过含量相对较高的花粉来重建古植被。  相似文献   
152.
AIMS: To correlate microbial community composition and water quality changes within wetland cells containing varying plant densities and composition in a free water surface (FWS) constructed wetland. METHODS AND RESULTS: Water chemistry was monitored weekly for nitrate, orthophosphate, and suspended solids, at various sites throughout the wetland for 6 months. Treatment ponds with 50% plant cover had about a 96.3% nitrate removal. The average change between the influent and effluent was 50-60% nitrate removal and 40-50% orthophosphate removal. Community profile of total DNA, generated by using denaturing gradient gel electrophoresis (DGGE), was used to determine the major microbial composition associated with the wetland sediment, rhizosphere, and surface water. Bacterial cloned libraries were constructed, and 300 clones were analysed by amplified ribosomal DNA restriction analysis (ARDRA) and grouped into operational taxonomic units (OTUs). A total of 35, 31, and 36 different OTU were obtained from sediment, rhizosphere, and surface water, respectively. The bacterial members within the dominant group of our clone library belonged to unclassified taxa, while the second predominant group consisted of members of the phylum Proteobacteria. The dominant organisms within the class were in the gamma, beta, and delta classes. CONCLUSION: Microbial diversity as determined by Shannon-Weaver index (H) was higher in the wetland cells with 50% plant density than the 100%. This was in agreement with the most efficient wetland contaminant removal units. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides evidence that wetlands with 50% plant cover may promote the growth of diverse microbial communities that facilitate decomposition of chemical pollutants in surface water, and improve water quality.  相似文献   
153.
We describe synthesis of novel acyclic nucleoside analogues which are building blocks for CuAAC reaction and their activity against two types of human cancer cell lines (HeLa, KB). Three of chosen compounds show promising cytotoxic activity. Synthesis pathway starting from simple and easily accessible substrates employing DMT or TBDPS protective groups is described. Adenosine and thymidine analogues containing alkyne moiety and adenosine analogue containing azido group were synthesized. The obtained units showed ability of forming triazole motif under the CuAAC reaction conditions.  相似文献   
154.
The surface of chitosan films was modified using acid chloride and acid anhydrides. Chemical composition at the film surface was analyzed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). ATR-FTIR data verified that the substitution took place at the amino groups of chitosan, thus forming amide linkages, and the modification proceeded to the depth at least 1 microm. Choices of molecules substituted at the amino groups of the glucosamine units did affect the hydrophobicity of the film surface, as indicated by air-water contact angle analysis. The surface became more hydrophobic than that of non-modified film when a stearoyl group (C(17)H(35)CO-) was attached to the films. The reaction of chitosan films with succinic anhydride or phthalic anhydride, however, produced more hydrophilic films. Selected modified films were subjected to protein adsorption study. The amount of protein adsorbed, determined by bicinchoninic acid (BCA) assay, related to the types of attached molecules. The improved surface hydrophobicity affected by the stearoyl groups promoted protein adsorption. In contrast, selective adsorption behavior was observed in the case of the chitosan films modified with anhydride derivatives. Lysozyme adsorption was enhanced by H-bonding and charge attraction with the hydrophilic surface. While the amount of albumin adsorbed was decreased possibly due to negative charges that gave rise to repulsion between the modified surface and albumin. This study has demonstrated that it is conceivable to fine-tune surface properties which influence its response to bio-macromolecules by heterogeneous chemical modification.  相似文献   
155.
156.
The denitrification potential and density of denitrifying bacteria were determined in suboxidized sediments of Matupi Harbor (Papua New Guinea). The sediments were characterized by low denitrification potentials, not exceeding 0.8 nM/(g h). The maximum density of denitrifying bacteria was recorded in the upper sediment horizons and was 104 cells/g of wet ground.  相似文献   
157.
Described herein are our limited structure–activity relationship (SAR) studies on a 5:7-fused heterocycle (1), containing the 4,6,8-triaminoimidazo[4,5-e][1,3]diazepine ring system, whose synthesis and potent broad-spectrum anticancer activity we reported a few years ago. Our SAR efforts in this study are mainly focused on judicial attachment of substituents at N-1 and N6-positions of the heterocyclic ring. Our results suggest that there is some subtle correlation between the substituents attached at the N-1 position and those attached at the N6-position of the heterocycle. It is likely that there is a common hydrophobic binding pocket on the target protein that is occupied by the substituents attached at the N-1 and N6-positions of the heterocyclic ligand. This pocket appears to be large enough to hold either a C-18 alkyl chain of N6 and no attachment at N-1, or a combined C-10 at N6 and a CH2Ph at N-1. Any alkyl chain shorter or longer than C-10 at N6 with a CH2Ph attached at N-1, would result in decrease of biological activity.  相似文献   
158.
PfEBA175 has an important role in the invasion of human erythrocytes by Plasmodium falciparum and is therefore considered a high priority blood-stage malaria vaccine candidate. PfEBA175 mediates adhesion to erythrocytes through binding of the Duffy-binding-like (DBL) domains in its extracellular domain to Neu5Acα2–3Gal displayed on the O-linked glycans of glycophorin-A (GYPA). Because of the difficulties in expressing active full-length (FL) P. falciparum proteins in a recombinant form, previous analyses of the PfEBA175-GYPA interaction have largely focused on the DBL domains alone, and therefore they have not been performed in the context of the native protein sequence. Here, we express the entire ectodomain of PfEBA175 (PfEBA175 FL) in soluble form, allowing us to compare the biochemical and immunological properties with a fragment containing only the tandem DBL domains (“region II,” PfEBA175 RII). Recombinant PfEBA175 FL bound human erythrocytes in a trypsin and neuraminidase-sensitive manner and recognized Neu5Acα2–3Gal-containing glycans, confirming its biochemical activity. A quantitative binding analysis showed that PfEBA175 FL interacted with native GYPA with a KD ∼0.26 μm and is capable of self-association. By comparison, the RII fragment alone bound GYPA with a lower affinity demonstrating that regions outside of the DBL domains are important for interactions with GYPA; antibodies directed to these other regions also contributed to the inhibition of parasite invasion. These data demonstrate the importance of PfEBA175 regions other than the DBL domains in the interaction with GYPA and merit their inclusion in an EBA175-based vaccine.  相似文献   
159.
Guanase is an important enzyme of the purine salvage pathway of nucleic acid metabolism and its inhibition has beneficial implications in viral, bacterial, and cancer therapy. The work described herein is based on a hypothesis that azepinomycin, a heterocyclic natural product and a purported transition state analog inhibitor of guanase, does not represent the true transition state of the enzyme-catalyzed reaction as closely as does iso-azepinomycin, wherein the 6-hydroxy group of azepinomycin has been translocated to the 5-position. Based on this hypothesis, and assuming that iso-azepinomycin would bind to guanase at the same active site as azepinomycin, several analogs of iso-azepinomycin were designed and successfully synthesized in order to gain a preliminary understanding of the hydrophobic and hydrophilic sites surrounding the guanase binding site of the ligand. Specifically, the analogs were designed to explore the hydrophobic pockets, if any, in the vicinity of N1, N3, and N4 nitrogen atoms as well as O5 oxygen atom of iso-azepinomycin. Biochemical inhibition studies of these analogs were performed using a mammalian guanase. Our results indicate that (1) increasing the hydrophobicity near O5 results in a negative effect, (2) translocating the hydrophobicity from N3 to N1 also results in decreased inhibition, (3) increasing the hydrophobicity near N3 or N4 produces significant enhancement of inhibition, (4) increasing the hydrophobicity at either N3 or N4 with a simultaneous increase in hydrophobicity at O5 considerably diminishes any gain in inhibition made by solely enhancing hydrophobicity at N3 or N4, and (5) finally, increasing the hydrophilic character near N3 has also a deleterious effect on inhibition. The most potent compound in the series has a Ki value of 8.0 ± 1.5 μM against rabbit liver guanase.  相似文献   
160.
All organisms rely on chemiosmotic membrane systems for energy transduction; the great variety of participating proteins and pathways can be reduced to a few universal principles of operation. This chemical basis of bioenergetics is reviewed with respect to the origin and early evolution of life. For several of the cofactors which play important roles in bioenergetic reactions, plausible prebiotic sources have been proposed, and it seems likely that these cofactors were present before elaborate protein structures. In particular, the hydrophobic quinones require only a membrane-enclosed compartment to yield a minimum chemiosmotic system, since they can couple electron transport and proton translocation in a simple way. It is argued that the central features of modern bioenergetics, such as the coupling of redox reactions and ion translocation at the cytoplasmic membrane, probably are ancient features which arose early during the process of biogenesis. The notion of a thermophile root of the universal phylogenetic tree has been discussed controversially, nevertheless, thermophiles are interesting model organisms for reconstructing the origin of chemiosmotic systems, since they are often acidophiles and anaerobic respirers exploiting iron–sulfur chemistry. This perspective can help to explain the prominent role of iron–sulfur proteins in extant biochemistry as well as the origin of both respiration and proton extrusion within the context of a possible origin of life in the vicinity of hot vents. Received: 6 June 2001 / Accepted: 16 October 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号