首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9968篇
  免费   690篇
  国内免费   564篇
  11222篇
  2024年   14篇
  2023年   146篇
  2022年   137篇
  2021年   205篇
  2020年   334篇
  2019年   333篇
  2018年   349篇
  2017年   292篇
  2016年   325篇
  2015年   331篇
  2014年   450篇
  2013年   768篇
  2012年   351篇
  2011年   398篇
  2010年   310篇
  2009年   427篇
  2008年   434篇
  2007年   459篇
  2006年   438篇
  2005年   436篇
  2004年   429篇
  2003年   389篇
  2002年   364篇
  2001年   252篇
  2000年   234篇
  1999年   214篇
  1998年   245篇
  1997年   173篇
  1996年   179篇
  1995年   189篇
  1994年   155篇
  1993年   152篇
  1992年   150篇
  1991年   123篇
  1990年   122篇
  1989年   93篇
  1988年   74篇
  1987年   86篇
  1986年   78篇
  1985年   86篇
  1984年   69篇
  1983年   49篇
  1982年   63篇
  1981年   48篇
  1980年   57篇
  1979年   56篇
  1978年   38篇
  1977年   27篇
  1976年   26篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
81.
Some studies have demonstrated that a few biological systems are affected by weak, extremely low frequency (ELF) electromagnetic fields (EMFs), lower than 10 mT. However, to date there is scanty evidence of this effect on Protists in the literature. Due to their peculiarity as single-cell eukaryotic organisms, Protists respond directly to environmental stimuli, thus appearing as very suitable experimental systems. Recently, we showed the presence of propionylcholinesterase (PrChE) activity in single-cell amoebae of Dictyostelium discoideum. This enzyme activity was assumed to be involved in cell-cell and cell-environment interactions, as its inhibition affects cell aggregation and differentiation. In this work, we have exposed single-cell amoebae of D. discoideum to an ELF-EMF of about 200 microT, 50 Hz, for 3 h or 24 h at 21 degrees C. A delay in the early phase of the differentiation was observed in 3 h exposed cells, and a significant decrease in the fission rate appeared in 24 h exposed cells. The PrChE activity was significantly lower in 3 h exposed cells than in the controls, whereas 24 h exposed cells exhibited an increase in this enzyme activity. However, such effects appeared to be transient, as the fission rate and PrChE activity values returned to the respective control values after a 24 h stay under standard conditions.  相似文献   
82.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   
83.
Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%–52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow‐induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli.  相似文献   
84.
Historical catch records of Atlantic salmon Salmo salar from three rivers discharging to the Baltic Sea in an area free from tides and from strong effects of the moon on illumination were analysed to investigate whether timing of S. salar river entry was associated with lunar cycles directly. Although a significant effect of lunar phase on river entry was detected, with more fish entering rivers around the full moon than other phases, the effect of the lunar cycle was very small compared with other sources of variation. Hence, the biological role of lunar cycle as a determinant of the timing of S. salar runs in the investigated populations was negligible, suggesting that lunar cycle per se does not play a role in the timing of S. salar river entry.  相似文献   
85.
Farm intensification options in pasture‐based dairy systems are generally associated with increased stocking rates coupled with the increased use of off‐farm inputs to support the additional feed demand of animals. However, as well as increasing milk production per hectare, intensification can also exacerbate adverse impacts on the environment. The objective of the present study was to investigate environmental trade‐offs associated with potential intensification methods for pasture‐based dairy farming systems in the Waikato region, New Zealand. The intensification scenarios selected were (1) increased pasture utilization efficiency (PUE scenario), (2) increased use of nitrogen (N) fertilizer to boost on‐farm pasture production (N fertilizer scenario), and (3) increased use of brought‐in feed as maize silage (MS) (MS scenario). Twelve impact categories were assessed. The PUE scenario was the environmentally preferred intensification method, and the preferred choice between the N fertilizer and MS scenarios depended upon trade‐offs between different environmental impacts. Sensitivity analysis was carried out to test the effects of choice associated with: (1) the approaches used to account for indirect land‐use change (ILUC) and (2) the competing product systems (conventional beef systems) used to handle the co‐product dairy meat for the climate change (CC) indicator. Results showed that the magnitude of the CC indicator results was influenced by the ILUC accounting approaches and the choice associated with a global marginal beef mix, but the relative CC indicator results for the three intensification scenarios remained unchanged.  相似文献   
86.
Pyruvic acid, lactic acid and several tricarboxylic acid cycle acids were extracted from Ditylenchus triformis and Turbatrix aceti and identified. Fumaric acid was predominant in both nematodes. Small amounts o f malic and α-ketoglutaric acids and intermediate quantities o f lactic, citric, succinic, and pyruvic acids occurred in D. triformis. In T. aceti citric, lactic, and α-ketoglutaric acids were less abundant than succinic, malic and pyruvic acids. Only traces of aconitic and oxalacetic acids occurred in both nematodes. All the organic acids detected accounted for only about one per cent of the dry weight of nematodes o f the two species.  相似文献   
87.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
88.
Most animals have complex life histories, composed of a series of ecologically distinct stages, and the transitions between stages are often plastic. Anurans are models for research on complex life cycles. Many species exhibit plastic timing of and size at metamorphosis, due to both environmental constraints on larval growth and development and adaptive plastic responses to environmental variation. Models predicting optimal timing of metamorphosis balance cost/benefit ratios across stages, assuming that size affects growth and mortality rates in each stage. Much research has documented such effects in the larval period, but we lack an equal understanding of juvenile growth and mortality. Here, we examine how variation in size at metamorphosis in the Neotropical red‐eyed treefrog, Agalychnis callidryas, affects post‐metamorphic growth, foraging, and behavior in the lab as well as growth and survival in the field. Surprisingly, many individuals lost mass for weeks after metamorphosis. In the lab, larger metamorphs lost more mass following metamorphosis, ate similar amounts, had lower food conversion efficiencies, and grew more slowly after mass loss ceased than did smaller ones. In field cages larger metamorphs were more likely to survive than smaller ones; just one froglet died in the lab. Our data suggest that size‐specific differences in physiology and behavior influence these trends. Comparing across species and studies, large size at metamorphosis generally confers higher survival; size effects on growth rates vary substantially among species, in both magnitude and direction, but may be stronger in the tropics.  相似文献   
89.
BACKGROUND: Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg‐linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS: Using a systems‐based toxicogenomic approach, we examined dose‐ and time‐dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO‐based application GO‐Quant, we quantitatively assessed dose‐ and time‐dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS: We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation–related GO biological processes. CONCLUSIONS: Our results suggest that MeHg‐induced impacts within these biological processes during gestational development may underlie MeHg‐induced teratogenic and neurodevelopmental toxicity outcomes. Birth Defects Res (Part B) 89:188–200, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
90.
CYLD is a tumour‐suppressor gene that is mutated in a benign skin tumour syndrome called cylindromatosis. The CYLD gene product is a deubiquitinating enzyme that was shown to regulate cell proliferation, cell survival and inflammatory responses, mainly through inhibiting NF‐κB signalling. Here we show that CYLD controls cell growth and division at the G1/S‐phase as well as cytokinesis by associating with α‐tubulin and microtubules through its CAP‐Gly domains. Translocation of activated CYLD to the perinuclear region of the cell is achieved by an inhibitory interaction of CYLD with histone deacetylase‐6 (HDAC6) leading to an increase in the levels of acetylated α‐tubulin around the nucleus. This facilitates the interaction of CYLD with Bcl‐3, leading to a significant delay in the G1‐to‐S‐phase transition. Finally, CYLD also interacts with HDAC6 in the midbody where it regulates the rate of cytokinesis in a deubiquitinase‐independent manner. Altogether these results identify a mechanism by which CYLD regulates cell proliferation at distinct cell‐cycle phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号