首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   26篇
  国内免费   19篇
  2023年   13篇
  2022年   18篇
  2021年   15篇
  2020年   20篇
  2019年   19篇
  2018年   20篇
  2017年   28篇
  2016年   23篇
  2015年   29篇
  2014年   31篇
  2013年   87篇
  2012年   13篇
  2011年   35篇
  2010年   20篇
  2009年   33篇
  2008年   40篇
  2007年   31篇
  2006年   29篇
  2005年   39篇
  2004年   32篇
  2003年   20篇
  2002年   22篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   3篇
  1997年   8篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   16篇
  1984年   7篇
  1983年   2篇
  1982年   13篇
  1981年   10篇
  1980年   13篇
  1979年   7篇
  1978年   10篇
  1977年   6篇
  1976年   4篇
  1975年   10篇
  1974年   2篇
  1973年   6篇
排序方式: 共有798条查询结果,搜索用时 140 毫秒
71.
A new eudesmane sesquiterpene glycoside, 1α,6β-dihydroxy-5,10-bis-epi-eudesm-15-carboxaldehyde-6-O-β-d-Glucopyranoside (1), together with eleven known compounds (212) were isolated from the leaves of Cinnamomum subavenium Miq. Their structures were elucidated by a combination of spectroscopic data analysis and comparison with literature data. All compounds were isolated from C. subavenium for the first time. The chemotaxonomic significance of the isolated compounds was summarized.  相似文献   
72.
73.
Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold.  相似文献   
74.
A rapid analytical method has been developed to determine xanthone and secoiridoid glycoside in in vitro and in vivo Swertia chirayita extracts. Ultra performance liquid chromatography–electrospray ionization mass spectrometry (LC-ESI/MS) was applied and validated for the analysis of xanthone and secoiridoid glycoside a potential active component isolated from methanolic extracts of in vitro and in vivo Swertia chirayita plantlets. Chromatographic separation was achieved on a RP-C18 column using gradient elution. Mangiferin (Xanthone), Amarogentin and Swertiamarin (Secoiridoid glycosides) were identified in both the extracts. In the LC/ESI-MS spectra, major [M + H] + and [M + Na] + ions were observed in positive ion mode and provided molecular mass information. An ultra-performance liquid-chromatography in combination with electrospray ionization tandem mass spectrometry involving metal cationisation was successfully utilized for the rapid identification of xanthone and secoiridoid glycosides. This method is suitable for the routine analysis, as well as for the separation and identification of known and novel secoiridoid glycoside and xanthone.  相似文献   
75.
76.
77.
Ficko-Blean E  Stuart CP  Boraston AB 《Proteins》2011,79(10):2771-2777
CPF_2247 from Clostridium perfringens ATCC 13124 was identified as a putative carbohydrate‐active enzyme by its low sequence identity to endo‐β‐1,4‐glucanases belonging to family 8 of the glycoside hydrolase classification. The X‐ray crystal structure of CPF_2247 determined to 2.0 Å resolution by single‐wavelength anomalous dispersion using seleno‐methionine‐substituted protein revealed an (α/α)6 barrel fold. A large cleft on the surface of the protein contains residues that are structurally conserved with key elements of the catalytic machinery in clan GH‐M glycoside hydrolases. Assessment of CPF_2247 as a carbohydrate‐active enzyme disclosed α‐glucanase activity on amylose, glycogen, and malto‐oligosaccharides. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   
78.
Halimodendrin I, a new acylated triterpene glycoside (1), was isolated and chemically characterized as 3β-O-palmitoyl-28-[3′-palmitoyl-β-d-glucopyranosyl]-olean-12-en-28-oic acid from the aerial part of Halimodendron halodendron (Fabaceae) by IR, 1D and 2D NMR, HR-ESI-MS and LR-ESI-MS experiments. In addition, seven known compounds were isolated and identified as: palmitic acid, glycerol-2-linoleneate, glycerol-1,3-dilinoleneate, ferulic acid, 3-O-methylquercetin, β-sitosterol, and β-sitosterol-3-O-β-d-glucopyranoside. Nine fatty acids were identified and quantified in the saponifiable matter of the hexane extract. These fatty acids are: myristic, n-pentadecanoic, palmitoleic, palmitic, linoleic, oleic, stearic, arachidic, and behenic acids. The volatile oil was isolated by hydrodistillation (0.013%, w/w) with unpleasant smell. Twenty-seven components were identified in the oil by GC/MS.  相似文献   
79.
The α-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus thermophilus was over 40%. The α-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 °C and pH 7. The enzyme hydrolyzed p-nitrophenyl-α-D-galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.  相似文献   
80.
A beta-glycosidase was purified from the seeds of Dalbergia nigescens Kurz based on its ability to hydrolyse p-nitrophenyl beta-glucoside and beta-fucoside. This enzyme did not hydrolyze various glycosidic substrates efficiently, so it was used to identify its own natural substrates. Two substrates were identified, isolated and their structures determined as: compound 1, dalpatein 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside and compound 2, 6,2',4',5'-tetramethoxy-7-hydroxy-7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (dalnigrein7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside). The beta-glycosidase removes the sugar from these glycosides as a disaccharide, despite its initial identification as a beta-glucosidase and beta-fucosidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号